Меню

Замена фильтра судовой двигатель

Замена фильтра судовой двигатель

Фильтры и фильтрационные установки судовых дизелей — часть 1

В дизельных топливах содержание загрязнений не должно превышать 0,05%, т.е. механические примеси практически должны отсутствовать. Однако опыт эксплуатации дизелей показывает, что загрязнения топлива, находящегося в эксплуатации, составляют 400-600 г на 1 т. В среднем в примеси находится 60

70% неорганических загрязнений (почвенная пыль, попадающая в топливо из воздуха, продукты коррозии емкостей и трубопроводов, продукты износа перекачивающих средств) и 30

40% органических (асфальто-смолистые продукты окислительной полимеризации нестабильных компонентов топлива). Для нормальной работы топливной аппаратуры размеры механических частиц в топливе должны быть меньше зазора в прецизионных парах насосов и форсунок

и поэтому не должны превышать 3-5 мкм. В связи с этим в систему очистки топлива устанавливают фильтры или специальные фильтрующие устройства.

Топливные фильтры служат для очистки топлива от механических примесей, засоряющих систему, и подразделяются на три типа:

♦ фильтры грубой (предварительной) очистки, устанавливаемые перед топливоподкачивающим насосом низкого давления (НД);

♦ фильтры тонкой очистки, устанавливаемые на пути от насоса НД к насосу ВД;

♦ щелевые фильтры ВД, устанавливаемые в непосредственной близости к форсунке или в самом корпусе форсунки.

В фильтрах тонкой очистки топливо очищают от механических примесей посредством пропускания через специальные фильтрующие материалы и через узкие щели, образованные сеткой, набором пластин и т.д. В качестве фильтрующих материалов применяют бумагу, хлопчатобумажную пряжу, фетр, особые поглощающие массы, пористые металлы.

Фильтр грубой очистки расположен перед насосом подачи топлива и предназначен для предварительной грубой очистки топлива от частиц, размером более 45 мкм (рис. 2.51). Крышка 7 фильтра прижата шпильками к корпусу 2 и уплотнена резиновым кольцом 10. Стержень 6 завертывается до упора в крышку, а пакет фильтрующих элементов 5, собранный на трехгранном стержне, прижимается к крышке гайкой 7 и шайбой 9, которая стопорится гранями стержня и предохраняет фильтрующие элементы от повреждения во время затяжки гайки 7. Гайка 7 стопорится шплинтом. Снизу в корпусе имеется резьбовая пробка 8 для слива отстоя.

Рис. 2.51. Конструкция фильтра грубой очистки топлива: 1

фильтрующий элемент; 6

шайба; 10 -резиновое кольцо

Топливо поступает в фильтр через нижнее отверстие в корпусе и, очищаясь (проходя через фильтрующие элементы), перетекает по каналам трехгранного стержня в канал крышки 1 и далее через верхнее отверстие в корпусе выходит из фильтра. Частицы размером более 45 мкм задерживаются
сетками пакета 5, оседая на их поверхностях, а также скапливаются в нижней части корпуса фильтра, где могут быть удалены через отверстие, закрытое пробкой 8.

Чтобы уменьшить гидравлическое сопротивление фильтра, особенно для вязких жидкостей, развивают его общую фильтрующую поверхность. Для уменьшения габаритов фильтрующий элемент изготавливают двухсторонним и набирают в общий корпус.

В фильтре этой конструкции отфильтрованная грязь остается с наружной стороны фильтрующего элемента. Для ее удаления фильтр необходимо отключить от системы, разобрать и промыть, что занимает относительно много времени. Чтобы не выводить систему из строя, устанавливают сдвоенный фильтр.

В пластинчато-щелевом фильтре (рис. 2.52) очистка фильтрующего элемента может выполняться без отключения фильтра.

Рис. 2.52. Конструкция фильтра грубой очистки топлива: 1

пластина фильтрующего элемента;
2

проставочные кольца; 3

вал для сборки пластин фильтрующего элемента; 4

скребки для очистки фильтрующего элемента; 5

направляющие, на которых собираются скребки; 6

проставочные пластины между скребками

Читайте также:  Пежо 307 тест драйвы

Здесь внутренний фильтрующий элемент набран из круглых пластин с прорезями. Его можно проворачивать за квадрат и ручку вверху. Грязная фильтруемая жидкость поступает в корпус фильтра, проходит через щели между пластинами к центральным отверстиям и из них идет в магистраль чистого топлива. Грязь остается на поверхности элемента, откуда она снимается специальными короткими пластинами (ножами), вставленными между пластинами элемента, и сбрасывается в низ корпуса при повороте фильтрующего элемента. Процесс проворачивания фильтрующего элемента при повышении перепада давления может быть автоматизирован. Однако и данный фильтр требует периодической промывки.

Все более широкое применение находят самоочищающиеся фильтры. На рис. 2.53 представлена схема устройства и включения такого фильтра. При нормальной работе открыты клапаны 2 и 3 правой или левой секции.

Для очистки сетки 4 от грязи включается второй фильтр, а у очищаемого закрывают клапан подачи 2 и открывают клапан спуска грязи 1. Тогда чистое топливо из магистрали через клапан 3 будет поступать как к потребителю, так и в очищаемый фильтр, внутрь фильтруемого элемента, и через его сетку — в корпус фильтра, смывая осадок с наружной стороны сетки. Топливо, смывшее грязь, уходит через клапан 1 в цистерну грязного топлива.

Рис. 2.53. Схема устройства и включения самоочищающегося фильтра


Рис. 2.54. фильтр с пневматической очисткой сетки: 1,2

фильтрующий элемент с сетками различного проходного сечения ячеек; 3

цилиндр фильтрующего элемента с зубчатым венцом внутреннего зацепления;
4 -рукоятка для вращения шестерни 5, проворачивающий цилиндр 3; 6

канало-воздушные сопла;
7

комбинированный кран подвода воздуха (а) и спуска грязного топлива (б); 8

канал (патрубок) спуска грязи; 10

На рис. 2.54 приведена другая конструкция самоочищающегося фильтра, у которого загрязненная сетка 1 очищается сжатым воздухом, подаваемым из сопл канала 6.

Фильтрующий элемент при этом поворачивается, грязь сливается через патрубок 9. На фильтрах обеих конструкций процесс очистки может быть автоматизирован.

В судовых системах топлива кроме фильтров грубой и тонкой очистки устанавливают магнитные фильтры, очищающие фильтруемую жидкость от ферромагнитных частиц. Конструкция такого фильтра представлена на рис. 2.55. В центре корпуса установлен сильный постоянный магнит 4, окруженный защитной сеткой 3. Жидкость поступает через нижний штуцер в корпус, проходит сквозь сетку 3, обтекает магнит, в верхней ча-сти корпуса вновь проходит сквозь сетку и выходит в верхний штуцер. На магнитном стержне оседают железные частицы. Немагнитные частицы под влиянием молекулярных сил агломерируют вокруг железных и вместе с ними оседают на магните. Кроме того, под действием магнитного поля мелкодисперсионные частицы, загрязняющие топливо, коагулируют, образуя шлам, который оседает на защитной сетке. Магнитный фильтр может устанавливаться отдельно или встраиваться в сетчатый фильтр. Результаты очистки этим фильтром приведены на рис. 2.55,б.

Магнитные фильтры широко применяют для очистки от ферромагнитных частиц размером 0,5 мкм и более. Они отличаются от других очистителей наименьшим гидравлическим сопротивлением (не более 150 Па). Преимущество магнитных фильтров: небольшие габариты, сравнительно невысокая стоимость, непрерывность действия и простота обслуживания; недостаток — невозможность использования для очистки топлив от механических примесей органического и неорганического происхождения.

Рис. 2.55. Магнитный фильтр: а -устройство. 1

штуцер подвода топлива;

пробка фильтра, 6

штуцер отвода топлива;

7 — направляющие ребер на магните; 8

сливная пробка; б

сравнительная эффективность фильтров. 1-с хлопчатобумажной набивкой; 2

Замена фильтра судовой двигатель

Главное меню

Судовые двигатели

В дизельных топливах согласно ГОСТ 4749—73 и ГОСТ 305—73 содержание загрязнений не должно превышать 0,05 %, т. е. механические примеси практи­чески должны отсутствовать. Однако опыт эксплуатации дизелей показывает, что загрязнения топлива, находящегося в эксплуатации, составляют 400—600 г на 1 т. В среднем в примеси находится 60—70 % неорганических загрязнений (почвенная пыль, попадающая в топливо из воздуха, продукты коррозии емко­стей и трубопроводов, продукты износа перекачивающих средств) и 30—40 % органических (асфальтосмолистые продукты окислительной полимеризации нестабильных компонентов топлива).

Читайте также:  Тест драйв шкода октавия 2020 модельного года

Неорганические загрязнения — основная причина абразивного износа прецизионных деталей топливной аппаратуры; органические загрязнения резко снижают срок службы фильтров, приводят к закоксовыванию распылителей. При нормальных условиях топливо обладает способностью связывать опреде­ленное количество воды (примерно 0,2 %) в растворенном виде. Конкретные технические требования к топливным фильтрам дизелей (табл. 5.10) изложены в ГОСТ 14146—79.

К новым фильтроматериалам относятся бумаги БФДТ, БТ-ЗП, БТ-5П, БТ-10П, БТ-15П (табл. 5.11).

Фильтры грубой очистки (табл. 5.12) задерживают частицы механи­ческих примесей размером более 0,04 мм.

Фильтры тонкой очистки задер­живают механические примеси неорганического и органического происхождения размером более 16 мкм. Кроме того, фильтры грубой очистки не пропускают коллоидных загрязне­ний органического происхождения (продукты разложения нефтепродуктов — смолы и асфальтены), вследствие чего для предотвращения быстрого засорения фильтров при удалении мелких частиц размером 5—7 мм и менее необходима предварительная очистка топлив сепарированием.

Магнитные фильтры широко применяют для очистки от ферромагнитных частиц (размером от 0,5 до 5 мкм и более) механических примесей. Они отлича­ются от других очистителей наименьшим гидравлическим сопротивлением (не более 150 Па). Преимущества магнитных фильтров: небольшие габариты, сравни­тельно невысокая стоимость, непрерывность действия и простота обслуживания; недостаток — невозможность использования для очистки жидких топлив и масел от механических примесей органического и неорганического происхождения. Для средне- и высоковязких топлив рекомендуется комплекс средств очистки: фильтры грубой очистки, центробежный сепаратор, фильтры грубой очистки.

Метод гомогенизации топлива состоит в гидродинамическом возмущении топливной среды, в результате которого в среде возникают кавитационные зоны (рис. 5.34).

Захлопывание кавитационных каверн сопровождается локальными гидравлическими ударами (высокой мощности), разрушающими не только же­леобразные сгущения, но и твердые агломераты. В результате топливо становится гомогенным, смолы равномерно распределяются в топливной среде, твердые частицы освобождаются от «смолистой шубы», а глобулы воды диспергируются. Такое топливо сепарируется и фильтруется с минимальными потерями горю­чей части. Гомогенизированное топливо обладает повышенной абразивностью, в связи с этим его необходимо пропускать через фильтры грубой очистки.

Наиболее перспективен новый метод очистки «Марисейв», разработанный японской фирмой «Санко Лайн К ° » для высокооборотный дизель средней мощности. В частности, в результате полного улавливания из низкосортного топлива взвешенного в нем асфальтового шлама (всех постоянных частиц размером более 5 мкм) с последую­щим диспергированием его ультразвуком в тонкие микрочастицы и возвратом в общую массу топлива обеспечи­вается 100 %-ное сжигание тяже­лого топлива.

Замена фильтра судовой двигатель

Главное меню

Судовые двигатели

По степени очистки масляные фильтры делятся на две группы: грубой очистки и тонкой очистки фильтры грубой очистки. Фильтры грубой очистки бывают сетчатые и щелевые (пластинчато-щелевые и проволочно-щелевые) и, как правило, выполняются сдвоенными, переключающимися трехходовым краном (рис. 6.16).

В качестве фильтрующего элемента применяют латунную или медную сетку с ячейками в свету диаметром 0,125; 0,15; 0,18 мм. Характерис­тики пластинчатых фильтров приведены в табл. 6.18.

Читайте также:  Рено каптур чья сборка автомобиля

фильтры грубой очистки обычно изготовляют из бумаги, фетра или толстого волок­нистого материала (табл. 6.19, рис. 6.17).

Крупные частицы раз­мером вплоть до 100 мкм остаются на сетке фильтры грубой очистки. Небольшое количество отложений на сетке состоит из высокомолекулярных полиароматических соединений (асфальтенов). Из-за высокой клейкости они действуют как связующий материал, вызывая прилипание кристаллов сульфата кальция к сетке. Поэтому они не могут быть удалены в процессе обратной промывки фильтра.

Величина осадков при «горячем» фильтровании зависит от вязкости масла (рис. 6.18).

Магнитные фильтры (рис. 6.19) или магнитные вставки в сетчатых фильтрах обеспечивают очистку масла от металлических частиц износа. Все фильтры очищаются сжатым воздухом давлением 0,6—0,8 МПа. На рис. 6.20 показана эффективность фильтров различных типов.

Полнопоточные фильтры (все масло, поступающее к дизелю, должно пройти через фильтр) обладают высокой пропускной способностью (до 150 м 3 /ч) с тонкостью очистки 20—40 мкм (см. табл. 6.19). Важным условием правильной и надежной защиты дизеля при работе с полнопоточными фильтрами является огра­ничение открытия перепускного клапана. Для этого необходима установка указателя перепада давления с обязательной сменой фильтроэлемента при перепаде давления на 20—30 кПа меньшем величины перепада, соответствующего началу открытия клапана (160—180, кПа).

Для лучшего удаления более мелких частиц используется байпасный фильтр (частично-поточный фильтр), способный удалять частички размерами до 3 мкм и рассчитанный на обработку не менее 10 % главного потока масла.

Степень износа основных деталей дизеля в зависимости от различных видов фильтрации показана на рис. 6.21.

Тонкая очистка комбинированным фильтрованием предусматривает ис­пользование комбинированных систем, фильтров и их элементов (рис. 6.22).

Комбинированию подлежат агрегаты очистки, в фильт­рах — элементы, в элементах — фильтрующие перегородки. Раз­ные фильтрующие элементы могут устанавливаться в отдельных очистителях, совмещаться в одном агрегате и быть составными. Принципиально важен способ частично-полнопоточная (комбинированная) система очистки.

С целью ограничения потока масла через частично-поточные фильтрующие элементы предусмотрен дроссель. Регулировочный клапан автоматически вводит в процесс фильтрования вспомога­тельный элемент при тяжелых режимах работы основного. Для дизелей мощностью 20—4000 кВт имеется пять типоразмеров фильтрующих элементов, выполняющих комбинированную тон­кую очистку масла. При комбинированной очистке масла приме­няют фильтрующие элементы: полнопоточные, частично-поточные, и частично-полнопоточные.

В табл. 6.20 представлены характеристики фильтрующих мате­риалов, рекомендованных к использованию при комбинированной очистке масла (в основном это листовые материалы толщиной 0,42—0,98 мм с тонкостью отсева 5—60 мкм, изготовленные из синтетического волокна, скрепленного латексом, поливинилацетатной эмульсией и другими клеющими составами).

В табл. 6.21 приведены типоразмеры и основные показатели фильтров масляных комбинированных для дизелей мощ­ностью свыше 100 кВт.

Очистка масла комбинированным фильтрованием перспек­тивна в дизелях с повышенным наддувом, работающих на мотор­ных и тяжелых сортах топлив, маслах групп Г 2 и Д при низких давлениях в системе смазки 0,2—0,3 МПа, с большой долей работы на перегрузках и на неустановившихся режимах при большом поступлении в масло продуктов неполного сгорания топлива. Применение фильтров масляных комбинированных в серийных судовых дизелях позволяет уве­личить срок службы моторного масла в 1,5—3 раза. Они способны очищать с тонкостью до 30 мкм 7,5—60 м 3 /ч масла, трудоемкость их обслуживания равна 0,4—1,2 чел.·ч на 1000 ч.

Adblock
detector