Меню

Варианты обработки деталей машин

Отделочные методы обработки деталей машин

Аннотация

Отделочные методы обработки деталей машин. В данной статье рассмотрены методы обработки деталей машин: шлифование, притирка, хонингование, суперфиниширование, полирование, ультразвуковая обработка, электроискровая обработка, светолучевая обработка металлов, вибрационное выглаживание, алмазное выглаживание. Приведены схемы.

Общие сведения

Каждая деталь машины должна иметь определенные эксплуатационные свойства – прочность, износостойкость, долговечность и т.д. Однако зависят они не только от материала, из которого деталь изготовлена, но и в значительной степени от шероховатости поверхности детали.

Рис.1. Способ обработки материала при помощи режущего образивного инструмента.

Чистовая обработка выполняется не только для получения точной и гладкой поверхности, но и для наиболее высоких механических и физических свойств поверхностного слоя.

Бурный рост технического прогресса предъявляет все большие требования к современным машинам, а это заставляет машиностроителей искать новые более совершенные методы обработки поверхности деталей.

Шлифование

Шлифование – способ обработки материала при помощи режущего образивного инструмента 2 (рис. 1). Обрабатываемая поверхность 1 может быть цилиндрической и конической, фасонной и др.

Шлифованием можно затачивать инструменты, а при острой необходимости произвести отрезку, разрезку заготовок и т. д. В зависимости от характера обрабатываемых поверхностей шлифование можно разделить на следующие виды: наружное (рис. 1, I) и внутреннее (рис. 1, II), плоское периферией (рис. 1, III) или торцом круга (рис. 1, IV).

Абразивные инструменты состоят из зерен абразивного материала, сцементированных связкой. Это шлифовальные круги, головки, сегменты и бруски.

Обычно твердые материалы (закаленная сталь, твердые сплавы, чугун) шлифуются мягкими кругами, так как затупившиеся при этом зерна круга легко дробятся и выкрашиваются из связки, обнажая новые острые кромки, которые продолжают резание до нового затупления, и т. д. Таким образом, круг обладает способностью самозатачиваться , т. е. восстанавливать автоматически в процессе работы остроту режущих кромок зерен, расположенных на поверхности круга. На рис. 2 показан процесс шлифования.

Рис. 2. Процесс шлифования.

Мягкую сталь обрабатывают твердыми кругами, для шлифования меди и латуни применяют мягкие крупнозернистые круги.

Твердые круги содержат наждачные корундовые, карборундовые порошки и порошки, твердость которых превышает твердость закаленной стали.

Мягкие круги содержат порошки из окисей хрома, алюминия, олова, железа, твердость которых ниже твердости закаленной стали.

Шлифовальные круги маркируют. Маркировка характеризует форму, размеры, род абразивного материала, зернистость, твердость, связку и другие параметры инструмента. Формы и размеры абразивных инструментов всех видов (круги, головки, бруски, сегменты) стандартизованы.

Из шлифовальных станков наибольшее распространение в массовом производстве получил плоскошлифовальный с прямоугольным столом, работающий периферией круга (рис. 3).

Рис.3. Шлифовальный станок.

Шлифуемая деталь устанавливается на магнитной плите 7, которая со столом 5 совершает движение подачи. Вращающийся шлифовальный круг 4, закрепленный в бабке 2 и прикрытый защитным кожухом 3, удаляет неровности, оставшиеся после предварительной обработки металлорежущими инструментами. Круг устанавливают в необходимое положение с помощью маховичков 1 и 6.

Притирка

Притирка, или доводка, – отделочная операция механической обработки деталей машин, приборов и других изделий. Этой опе-рацией достигаются высокая точность (до 1-го класса) и высокий класс шероховатости обработки (до 14-го класса). Инструментом служит притир, изготовленный из более мягкого материала, чем обрабатываемый. Это может быть чугун марок СЧ 15 или СЧ 20, красная медь, твердые породы древесины и т. д. На поверхность этих материалов наносят абразивный порошок в масле или пасту.

Процесс насыщения поверхности притира абразивным материалом называется шаржированием.

Притиркой производят точную доводку резьбовых, круглых и гладких калибров, измерительных плиток, разверток и др.

В машиностроении этот процесс широко распространен при изготовлении шариков и роликов для Подшипников, а также коленчатых валов (доводка шеек), клапанов, цилиндров, плунжеров, поршневых колец и других деталей, требующих высокой точности или герметичности при соединении.

В настоящее время создано много различных конструкций притирочных станков и приспособлений от простых вращающихся дисков-притиров до самых сложных.

Хонингование

Это способ шлифовально-притирочной обработки наружных и внутренних цилиндрических поверхностей. Он производится специальным инструментом – хоном, состоящим из головки со вставленными по окружности абразивными брусками (рис. 4, I). На рис. 4, II дана схема хонингования.

Рис. 4. Схема хонингования.

Читайте также:  Масло для двигателя мотоблока брайт

Хонинговальная головка (хон) имеет два движения: сравнительно медленное вращательное вокруг оси обрабатываемого отверстия и возвратно-поступательного вдоль этой оси.

Хонинговальные головки имеют конструкцию, которая позволяет сдвигать или раздвигать бруски как во время ввода, так и вывода из отверстия, а также и в процессе работы для получения нужного размера по диаметру. Устройство головок дает возможность брускам самоустанавливаться, плотно прижимаясь к поверхности обрабатываемого отверстия. Бруски приклеиваются к подвижным колодкам – башмакам, которые стягиваются к центру головки пружинами.

Хонингованием может быть получена шероховатость обработанной поверхности Rа0,32. 0,080. Хонингование выполняется на хонинговальных станках. По своему устройству они напоминают сверлильные станки.

Суперфиниширование

Суперфиниширование — один из наиболее производительных процессов обработки. Этим способом обрабатываются главным образом наружные поверхности тел вращения и плоскостей. Сущность процесса состоит в том, что головке с абразивными брусками 1 с очень мелкой зернистостью сообщается возвратно-поступательное, колебательное движение, а обрабатываемой детали 2 – вращательное (рис. 5).

Рис. 5. Схема суперфиниширования.

Процесс суперфиниширования широко применяется для обработки ответственных деталей автомобильных и авиационных двигателей (поршней, шеек коленчатых валов, подшипников и т. д.).

Суперфиниширование позволяет получить шероховатость поверхности Rz 0,160. 0,040, в отдельных случаях Rz 0,100. 0,050.

Полирование

Полирование – отделочная операция, которая применяется для придания поверхности детали металлического блеска, повышения долговечности и внешней красоты, или как подготовительная операция перед хромированием, никелированием и другими покрытиями.

Полировальники обычно имеют форму круга и вращаются с большой скоростью. Для предварительного полирования применяются абразивные порошки, стеклянная и наждачная шкурка, а для окончательного полирования – полирующие составы, пасты, для наведения блеска – фетр и стекло. Широкое применение для полирования находит паста ГОИ – смесь абразивного порошка с поверхностноактивными веществами. В этом случае шероховатость поверхности может быть доведена до зеркального блеска.

Полирование выполняется как на простых полировальных станках, так и на полуавтоматических и автоматических.

Метод анодно-механической обработки

В современном машиностроении для заточки инструментов и резки металлов применяют прогрессивный метод анодно-механической обработки. Этот метод применяется также для обработки деталей машин, требующих высокого качества шероховатости поверхности и точности размеров.

Сущность процесса анодно-механической обработки состоит в электрохимическом и механическом воздействии на обрабатываемую поверхность.

Производительность этого процесса не уступает производительности при хонинговании и суперфинише и, что самое главное, не зависит от механических качеств обрабатываемого металла.

Известен также процесс чистовой обработки поверхностей деталей машин жидкой абразивной струей. Суть этого процесса заключается в том что зерна абразива, хорошо перемешанные с жидкостью под давлением в несколько атмосфер, направляются на поверхность и сглаживают на ней гребешки (рис. 6).

Рис. 6. Процесс чистовой обработки поверхностей деталей машин жидкой абразивной струей.

Большим достоинством этого процесса является то, что для него доступны поверхности любой формы и любых размеров.

Алмазное выглаживание

Весьма эффективен метод отделки и поверхностного упрочнения деталей алмазным выглаживанием. Выглаживанию легко поддаются поверхности стальных деталей, цементированные и азотированные, имеющие твердые покрытия, а также детали из бронзы и других сплавов. Осуществляется зтот процесс на токарных или расточных станках и не требует особой оснастки. Кристалл алмаза 3, закрепленный в оправке приспособления 1 и 2 (рис. 7), перемещается вместе с суппортом станка. Наконечник для выглаживания обычно изготовляют из искусственных алмазов.

Рис. 7. Схема приспособления для алмазного выглаживания.

Разновидностью алмазного выглаживания является процесс вибрационного выглаживания или виброобкатывания. Конструкции виброобкатных головок бывают разные.

Все они крепятся на суппорте токарного станка и перемещаются вместе с ним.

Существуют и другие прогрессивные методы обработки деталей. Рассмотрим некоторые из них.

Ультразвуковая обработка

Этот метод обработки основан на применении упругих колебаний сверхзвуковой частоты (16 . 20 тыс. колебаний в секунду). Ультразвуковые колебания получают чаще всего с помощью специальных устройств – излучателей. Для обработки металлов и твердых материалов обычно используют магнитострикционные излучатели. (Магнитострикция – способность некоторых материалов (кобальта, никеля, их сплавов и др.) изменять геометрические размеры под действием магнитного поля, а при его снятии – восстанавливаться в первоначальных размерах).

С помощью ультразвука можно сверлить, шлифовать, сваривать, паять, разрезать и выполнять многие другие работы. Так, например, еще недавно нельзя было обнаружить скрытые дефекты в материале, теперь на помощь человеку приходит ультразвук, магнитное поле, рентген, гамма-лучи, интроскопия (внутривидение) – метод контроля, позволяющий видеть дефекты внутри непрозрачных тел.

Читайте также:  Ремонт автомобиля сторонней организацией бухгалтерский учет

Электроискровая обработка

Электроискровой метод обработки металлов основан на явлении электрической эрозии. Электроэрозия разрушает поверхность металла под воздействием искр, получаемых от электрических разрядов. В результате можно получить в металле любой твердости отверстия размерами 0,15 мм и менее, профильные канавки, пазы (в штампах, волочильных досках, режущем инструменте и др.).

Светолучевая обработка металлов

Эта обработка основана на использовании мощного светового луча, который посредством оптической системы фокусируется на обрабатываемую поверхность, создавая температуру в несколько тысяч градусов. Источником энергии является лазер – прибор, излучающий свет в виде направленного луча. Этот луч используется для обработки небольших отверстий, пазов, разрезки заготовок из материалов, имеющих любые физико-механические свойства.

Виды обработки деталей. Технологичность конструкции машин и деталей. Применяемые виды обработки деталей машин

2.1 Изготовление заготовок деталей машин производится:

а) литьем металлов различными способами: в земляные формы, в кокили, центробежным методом, по выплавляемым моделям, под давлением, в оболочковые формы;

б) обработкой металлов давлением: прокаткой, ковкой, штамповкой, прессованием, волочением.

2.2 Обработка заготовок механическими способами:

а) обработка на металлорежущих станках;

б) пластическим деформированием;

в) холодной правкой металлических деталей.

2.3 Химико-механическая обработка:

в) обработка твердосплавных инструментов

2.4 Электрохимическая обработка:

Сущность: применение электрической энергии в форме электролиза.

2.5.Термическая обработка:

2.6.Химико-термическая обработка:

г) диффузионная металлизация.

2.7.Старение заготовок деталей

2.8.Технологичность конструкции деталей

Принцип технологичности конструкции заключается в выполнении требований наиболее рационального и экономического изготовления изделия. Чем меньше трудоемкость изготовления детали, тем она технологичнее.

Технологичная конструкция должна предусматривать:

— максимально широкое использование унифицированных сборочных единиц, стандартизованных и нормализованных деталей и элементов деталей;

— возможно меньшее количество деталей сложной формы, различных наименований и возможно большую повторяемость деталей;

— создание деталей рациональной формы с легкодоступными для обработки поверхностями и достаточной жесткости;

— наличие на деталях удобных базирующих поверхностей или возможность создания вспомогательных баз в виде бобышек, поясков ит.д.;

— наиболее рациональный метод получения заготовки;

— полное устранение или возможно меньшее применение слесарно-пригоночных работ при сборке;

Технологичность конструкции заготовок деталей предусматривает упрощение процессов изготовления самих заготовок:

1) литые заготовки должны соответствовать следующим требованиям:

— толщина стенок отливки по возможности должна быть одинаковой
без резких переходов от тонкостенных частей к толстостенным;

— поверхности отливки, расположенные перпендикулярно плоскости
разъема модели, должны иметь конструктивные литейные уклоны;

2) заготовки, полученные методами штамповки или ковки, должны соответствовать следующим требованиям:

— иметь плавный переход в поперечных сечениях и изгибах; закругление острых ребер у штамповок;

— штамповки должны иметь уклон поверхностей, расположенных перпендикулярно плоскости разъема штампа.

Таким образом, общая технологичность конструкции оценивается следующими показателями:

-трудоемкостью конструкции, т.е. временем, затраченным на ее изготовление;

— коэффициентом использования металла при изготовлении детали;

степенью использования стандартных и нормализованных деталей и сборочных единиц;

— процентным отношением количества деталей сложной формы к общему количеству деталей в конструкции;

— степенью использования в сборочных единицах деталей, ранее

— применяемых в конструкциях аналогичных машин;

— -коэффициентом повторности одноименных деталей;

— себестоимостью изготовления деталей, сборочных единиц, целого
изделия.

2.9. Базирование деталей. Установка деталей на станках

2.9.1. Поверхности и базы обрабатываемой детали

При установке деталей для обработки на станках различают следующие поверхности:

— поверхности базы, определяющие положение детали при обработке;

— поверхности, воспринимающие зажимные силы;

— поверхности, от которых измеряют выдерживаемые размеры;

В технологии машиностроения различают базы: технологические, сборочные и конструктивные.

Технологические базы подразделяют на установочные и измерительные.

Установочные базы — это поверхности детали, которыми она устанавливается для обработки в определенном положении относительно приспособления и режущего инструмента.

Установочными базами могут быть: плоские поверхности, наружные и внутренние цилиндрические поверхности, торцовые поверхности, поверхности отверстий, поверхности центровых гнезд, конические, криволинейные поверхности и др.

Установочные базы могут быть обработанные и необработанные. В качестве установочных баз необработанные поверхности можно применять при начальных операциях. Это — черновые базы. Обработанные поверхности — чистовые базы — необходимы для дальнейших операций. Черновые базы должны быть ровными и гладкими.

Читайте также:  Как настроить свет машины

Установочная база может быть основной и вспомогательной.

Основная установочная база — это поверхность, которая служит для установки деталей при обработке, а в механизме сопрягается с другой деталью. Например, зубчатое колесо (отверстие под вал).

Вспомогательная установочная база — это поверхность детали, которая служит только для ее установки. Например, центровые отверстия валов.

Измерительная база — это поверхность, от которой при измерении производится непосредственный отсчет размеров.

Сборочная база — поверхность или совокупность поверхностей, линий, точек, которые определяют положение детали относительно других деталей в собранном узле или машине.

Конструктивная база — это совокупность поверхностей, линий, точек, от которых задаются размеры и положение других деталей при разработке конструкции.

2.9.2. Принципы постоянства базы и совмещения баз

Принцип постоянства базы заключается в том, что для выполнения всех операций обработки детали используют одну и ту же базу, при этом достигается наибольшая точность обработки. Если по характеру обработки невозможно использовать одну и ту же базу, необходимо в качестве новой базы выбрать такую обработанную поверхность, которая определяется точными размерами по отношению к поверхностям, наиболее влияющим на работу детали в машине.

При выборе баз различного назначения надо стремиться к тому, чтобы использовать одну поверхность в качестве различных баз, это повышает точность обработки. В этом заключается принцип совмещения баз.

Размеры базы должны быть такими, чтобы обеспечить прочное, надежное крепление деталей; базирующие поверхности не должны деформироваться от сил, возникающих при обработке.

Обработка детали начинается с поверхности, которая служит установочной базой для дальнейших операций, затем обрабатывают другие поверхности, начиная с менее точной, и конечной операцией является обработка наиболее точной поверхности.

В качестве установочных баз целесообразнее выбирать основные базы.

2.10 Способы установки деталей. Правило шести точек

2.10.1. Установка детали осуществляется следующими способами

— непосредственно на столе станка или в универсальном приспособлении с выверкой положения детали относительно стола станка и инструмента. Применяется в единичном и мелкосерийном производстве;

— на столе станка по разметке; цель разметки — обозначить на заготовке положение обрабатываемых поверхностей. Применяется в мелкосерийном и единичном производстве;

— в специальном приспособлении, что обеспечивает определенное положение детали относительно режущего инструмента с достаточно высокой точностью и с малой затратой времени. Применяется этот способ в крупносерийном и массовом производстве. В единичном и мелкосерийном производстве применяется редко, только в тех случаях, когда без таких приспособлений невозможно выполнить требования технических условий.

2.10.2. Правило шести точек

Рисунок 1 – Схема базирования детали (правило шести точек): Р1, Р2 и Р3— силы, действующие на деталь при базирровании

Твердое тело в про­странстве имеет 6 степеней свободы: три возможных перемещения (1, П, Ш) см (рис. 1) .

Вдоль трех произвольно выбранных взаимно перпендикулярных осей координат X, Y, Z и три возможных вращательных движения относительно этих же осей (IV, V, VI).

Правило 6 точек заключается в том, что каждая деталь должна базироваться на шести неподвижных точках, при этом она лишается плести степеней свободы. Эти шесть точек должны быть расположены в трех взаимно перпендикулярных плоскостях: три опорные точки (1,2,3) — в плоскости XOZ; две точки (4,5) — в плоскости YOZ и одна точка (6) — в плоскости XOY.

Координаты 1,2,3 лишают деталь возможности перемещаться в направлении оси Y и вращаться вокруг осей. X и Z, т.е. они лишают деталь трех степеней свободы; координаты 4 и 5 лишают деталь возможности перемещаться в направлении оси X и вращаться вокруг оси Y; т.е. лишают деталь двух степеней свободы; координата 6 лишает деталь возможности перемещаться в направлении оси Z, т.е. лишают деталь одной степени свободы.

Таким образом, точки 1,2,3 определяют опорную плоскость; 4,5 -направляющую плоскость; 6 — упорную плоскость. Надежность закрепления гарантирована.

Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.039 сек.)

Adblock
detector