Узел дроссельной заслонки
Дроссельная заслонка с механическим приводом отвечает за величину подачи воздуха в цилиндры двигателя и следовательно напрямую влияет на состав топливной смеси. Основная часть дроссельного узла представлена в виде отрезка трубы, в которой на подвижной оси закреплена заслонка округлой формы, полностью перекрывающая сечение трубы при закрытии.
Узел дроссельной заслонки имеет датчик положения дроссельной заслонки (ДПДЗ) связанный с ЭБУ (электронным блоком управления) двигателя.
Чем на больший угол поворачивается дроссельная заслонка (утоплена педаль газа), а значит увеличивается приток воздуха, тем больше топлива впрыскивают форсунки. Датчик положение заслонки сообщает ЭБУ о большем угле открытия и блок управления дает команду форсункам на большую подачу топлива.
Когда двигатель работает в режиме холостого хода, то дроссельная заслонка полностью закрыта и воздух для образования топливной смеси поступает по специальному обводному каналу.
Неисправности дроссельного узла
Пока дроссельная заслонка чистая и может плотно закрываться, двигатель работает стабильно не вызывая каких-либо нареканий. Однако по мере эксплуатации дроссельная заслонка покрывается различными отложениями и уже не может полностью перекрыть сечение дросселя. Иногда заслонка может даже подклинивать в каком — либо положении.
Так как воздуха для режима холостого хода становится больше нормы, то нарушается и состав топливной смеси. Это в свою очередь отражается на работе двигателя, а именно:
• Затрудненный пуск двигателя;
• Плавающий холостой ход;
• Рывки в движении на малой скорости (до 20 км/ч);
• Повышенный расход топлива.
Без снятия узла, лишь отсоединив патрубок воздушного фильтра, убрать грязь помогает промывка дроссельной заслонки аэрозолью для чистки карбюраторов и инжекторов. Состав аэрозоли очень активный и практически мгновенно убирает весь налет, затем достаточно протереть заслонку и внутренность корпуса чистой ветошью или салфеткой.
При более сильном загрязнении дроссельную заслонку необходимо снять, убрать уплотнители, тщательно прочистить узел и вновь нанести средство для прочистки карбюраторов и инжектора.
Если после прочистки дроссельного узла проблема остается, то необходимо проверить целостность прокладки и заменить датчик положения дроссельной заслонки.
Дроссельная заслонка
На современных авто питание силовой установки осуществляется двумя системами – впрыска и впуска. Первая из них отвечает за подачу топлива, в задачу второй входит обеспечение поступления воздуха в цилиндры.
Назначение, основные конструктивные элементы
Несмотря на то, что подачей воздуха «заведует» целая система, конструктивно она очень проста и основным ее элементом выступает дроссельный узел (многие по старинке называют его дроссельной заслонкой). И даже этот элемент имеет несложную конструкцию.
Принцип работы дроссельной заслонки остался идентичным еще со времен карбюраторных двигателей. Она перекрывает основной воздушный канал, благодаря чему и регулируется количество подаваемого в цилиндры воздуха. Но если эта заслонка раннее входила в конструкцию карбюратора, то в инжекторных двигателях она является полностью отдельным узлом.
Помимо основной задачи – дозировки воздуха для нормального функционирования силового агрегата на любом режиме, эта заслонка также отвечает за поддержание требуемых оборотов коленвала на холостом ходу (ХХ), причем с разной нагрузкой на мотор. Участвует она и в функционировании усилителя тормозной системы.
Устройство дроссельной заслонки – очень простое. Основными ее конструктивными составляющими являются:
- Корпус
- Заслонка с осью
- Механизм привода
Механический дроссельный узел
Дроссели разных типов также могут включать ряд дополнительных элементов – датчики, байпасные каналы, каналы подогрева и т. д. Более подробно конструктивные особенности дроссельных заслонок, применяемых на авто, рассмотрим ниже.
Устанавливается дроссельная заслонка в воздуховоде между фильтрующим элементом и коллектором двигателя. Доступ к этому узлу ничем не затруднен, поэтому при проведении обслуживающих работ или замене добраться до него и демонтировать с авто несложно.
Типы узлов
Как уже отмечено, существуют разные виды дроссельной заслонки. Всего их три:
- С механическим приводом
- Электромеханический
- Электронный
Именно в таком порядке и развивалась конструкция этого элемента системы впуска. Каждый из существующих видов имеет свои конструктивные особенности. Примечательно, что с развитием технологий устройство узла не осложнялось, а наоборот – становилось проще, но с некоторыми нюансами.
Заслонка с механическим приводом. Конструкция, особенности
Начнем с заслонки с механическим приводом. Этот тип детали появился с началом установки инжекторной системы питания на автомобили. Основная его особенность заключается в том, что заслонкой водитель управляет самостоятельно при помощи тросового привода, соединяющего педаль акселератора с сектором газа, соединенного с осью заслонки.
Конструкция такого узла полностью позаимствована с карбюраторной системы, разница лишь в том, что заслонка – отдельный элемент.
В конструкцию этого узла дополнительно входят датчик положения (угла открытия заслонки), регулятор холостого хода (ХХ), байпасные каналы, система подогрева.
Дроссельный узел с механическим приводом
В целом, датчик положения дросселя присутствует во всех типах узлов. В его задачу входит определение угла открытия, что дает возможность электронному блоку управления инжектором определить количество подаваемого в камеры сгорания воздуха и на основе этого откорректировать подачу топлива.
Ранее использовался датчик потенциометрического типа, в котором определение угла открытия осуществлялось за счет изменения сопротивления. Сейчас обычно применяются магниторезистивные датчики, которые являются более надежными, поскольку в них отсутствуют контактные пары, подверженные износу.
Датчик положения дроссельной заслонки потенциометрического типа
Регулятор ХХ в механических дросселях представляет собой отдельный канал, идущий в обход основного. Этот канал оснащается электроклапаном, корректирующим поступление воздуха в зависимости от условий функционирования двигателя на ХХ.
Устройство регулятора холостого хода
Суть его работы такова – на ХХ заслонка полностью закрыта, но для работы мотора требуется воздух, он и подается по отдельному каналу. При этом ЭБУ определяет обороты коленвала, на основе чего регулирует степень открытия этого канала электроклапаном, чтобы поддерживать заданные обороты.
Байпасные каналы работают по тому же принципу, что и регулятор. Но в их задачу входит поддержание оборотов силовой установки при создании нагрузки на холостом ходу. К примеру, при включении климат-системы, нагрузка на мотор повышается, из-за чего обороты падают. Если регулятор не способен обеспечить мотор необходимым количеством воздуха, то задействуются байпасные каналы.
Но эти дополнительные каналы имеют существенный недостаток – сечение их небольшое, поэтому возможно их засорение и обледенение. Для борьбы с последним, дроссельная заслонка подключается к системе охлаждения. То есть, по каналам в корпусе циркулирует охлаждающая жидкость, отогревая каналы.
Компьютерная модель каналов в дроссельной заслонке
Основным недостатком механического дроссельного узла является наличие погрешности при приготовлении топливовоздушной смеси, что сказывается на экономичности двигателя и выходе мощности. Все из-за того, что ЭБУ не управляет заслонкой, на него лишь подается информация об угле открытия. Поэтому при резких изменения положения дросселя блок управления не всегда успевает «подстроиться» под изменившиеся условия, что и приводит к перерасходу топлива.
Электромеханическая дроссельная заслонка
Следующим этапом развития дроссельный заслонок стало появление электромеханического типа. Механизм управления у него остался прежний – тросовый. Но в этом узле отсутствуют какие-либо дополнительные каналы за ненадобностью. Вместо всего этого в конструкцию добавили электронный механизм частичного управления заслонкой, управляемый ЭБУ.
Конструктивно этот механизм включает в себя обычный электромотор с редуктором, который соединен с осью заслонки.
Работает этот узел так: после запуска двигателя, блок управления для установления требуемых оборотов холостого хода рассчитывает количество подаваемого воздуха и приоткрывает заслонку на нужный угол. То есть, блок управления в таком типе узла получил возможность регулировать работу двигателя на холостых оборотах. На остальных же режимах функционирования силовой установки дросселем управляет сам водитель.
Использование механизма частичного управления позволило упростить конструкцию самого дроссельного узла, но не устранило основной недостаток – погрешности в смесеобразовании. Его в заслонке такой конструкции нет только на холостом ходу.
Электронная заслонка
Последний тип – электронный, внедряется на автомобили все больше. Его основная особенность заключается в отсутствии прямого взаимодействия педали акселератора с осью заслонки. Механизм управления в такой конструкции уже полностью электрический. В нем используется все тот же электродвигатель с редуктором, связанный с осью, и управляемый ЭБУ. Но открытием заслонки блок управления «заведует» уже на всех режимах. В конструкцию дополнительно добавили еще один датчик – положения педали акселератора.
Элементы электронной дроссельной заслонки
В процессе работы блок управления использует информацию не только с датчиков положения заслонки и педали акселератора. В учет берутся также сигналы, поступающие со следящих устройств автоматических трансмиссий, тормозной системы, климатического оборудования, круиз-контроля.
Вся поступающая информация с датчиков обрабатывается блоком и на ее основе устанавливается оптимальный угол открытия заслонки. То есть, электронная система полностью контролирует работу системы впуска. Это позволило устранить погрешности в смесеобразовании. На любом режиме работы силовой установки в цилиндры будет подаваться точное количество воздуха.
Но и без недостатков у этой системы не обошлось. Причем их чуть больше, чем в других двух видах. Первая из них заключается в том, что заслонка открывается при помощи электродвигателя. Любые, даже незначительные неисправности составляющих привода, приводят к нарушению работы узла, что сказывается на функционировании двигателя. В тросовых механизмах управления такой проблемы нет.
Второй недостаток – более существенный, но касается он по большей части бюджетных автомобилей. И сводится он к тому, что из-за не очень хорошо проработанного программного обеспечения дроссель может работать с запозданием. То есть, после нажатия на педаль акселератора ЭБУ требуется некоторое время на сбор и обработку информации, после чего он подает сигнал на электродвигатель механизма управления дросселем.
Основная причина задержки от нажатия на электронную педаль газа до реакции двигателя — более дешевые электронные комплектующие и не оптимизированное программное обеспечение.
В обычных условиях этот недостаток особо не заметен, но при определенных условиях такая работа может привести к неприятным последствиям. К примеру, при начале движения на скользком участке дороги иногда возникает потребность быстрой смены режима работы мотора («поиграться педалью»), то есть, в таких условиях нужен быстрый «отклик» мотора на действия водителя. Существующая же задержка в срабатывании дросселя может привести к осложнению в управлении автомобилем, поскольку водитель «не чувствует» двигатель.
Еще одна особенность электронной дроссельной заслонки некоторых моделей авто, которая для многих является недостатком – особые заводские установки работы дросселя. В ЭБУ заложена установка, которая исключает вероятность пробуксовки колес при старте. Достигается это тем, что при начале движения блок специально не открывает заслонку для получения максимальной мощности, по сути, ЭБУ дросселем «придушивает» двигатель. В некоторых случаях эта функция сказывается негативно.
На премиумных авто проблем с «откликом» системы впуска нет из-за нормальной проработки программного обеспечения. Также на таких авто нередко можно установить режим работы силовой установки по предпочтениям. К примеру, при режиме «спорт» перенастраивается работа и системы впуска, и в этом случае ЭБУ на старте уже не «душит» двигатель, что позволяет авто «резво» начать движение.
Принцип работы — Узел дроссельной заслонки, РХХ, ДПДЗ.
Чтобы отправить ответ, вы должны войти или зарегистрироваться
Сообщений 2
1 Тема от Aleksandr.21124 2015-12-10 20:37:50 (2015-12-16 11:59:58 отредактировано Aleksandr.21124)
- Aleksandr.21124
- Свояк
- Неактивен
- Регистрация: 2014-08-11
- Сообщений: 392Спасибо: 169
- Авто: ВАЗ 21124
Тема: Принцип работы — Узел дроссельной заслонки, РХХ, ДПДЗ.
Принцип работы — Узел дроссельной заслонки, РХХ, ДПДЗ.
Дроссельная заслонка является конструктивным элементом впускной системы бензиновых двигателей внутреннего сгорания с впрыском топлива и предназначена для регулирования количества воздуха, поступающего в двигатель для образования топливно-воздушной смеси. Дроссельная заслонка устанавливается между воздушным фильтром и впускным коллектором.
По своей сути дроссельная заслонка является воздушным клапаном. При открытой заслонке давление во впускной системе соответствует атмосферному давлению, при закрытии — уменьшается до состояния вакуума. Это свойство дроссельной заслонки используется в работе вакуумного усилителя тормозов, для продувки адсорбера системы улавливания паров бензина.
На первый взгляд, узел дроссельной заслонки представляет собой несложное механическое устройство. На нем располагается датчик положения дроссельной заслонки и шаговый мотор (регулятор холостого хода). В комплексе этот узел должен соответствовать строгим техническим условиям. Отклонение характеристик узла дроссельной заслонки от этих ТУ существенно влияет на поведение двигателя в переходных режимах: разгон, торможение, движение накатом, работа на режиме холостого хода, запуск двигателя. Исправность датчика положения дроссельной заслонки и шагового двигателя не гарантируют правильную работу системы при некачественном исполнении механики и конструкции дроссельной заслонки. Узел дроссельной заслонки является в системе устройством, через которое водитель задает требуемую скорость движения автомобиля. Нажимая на педаль дроссельной заслонки (газа), он изменяет пропускную способность впускного коллектора для подачи воздуха в двигатель. Вторая задача дроссельного узла заключается в поддержании байпасного канала (канал ХХ) в таком режиме, чтобы при отказе водителя от управления дросселем (выключение КПП, торможение, движение накатом — во всех этих случаях дроссельная заслонка закрыта) этот канал обеспечивал необходимое наполнение двигателя воздухом для поддержания заданных системой оборотов вращения коленчатого вала 800 об/мин. Этот режим реализуется с помощью шагового мотора, установленного в узле дроссельной заслонки.
В двигатель поступает определённое количество воздуха, необходимое для нормальной работы двигателя, тем самым регулируя холостой ход.
Поступающий воздух анализируется датчиком массового расхода воздуха (ДМРВ) и, в соответствии с его количеством, Контроллёр подаёт необходимое количество бензина в двигатель через топливные форсунки. По датчику положения коленчатого вала (ДПКВ), контроллер следит за количеством оборотов двигателя и управляет регулятором холостого хода. Именно так происходит процесс подачи нужного объёма воздуха.
На холодном двигателе контролёр повышает обороты за счёт регулятора холостого хода (рхх) и повыщает обороты двигателя при прогреве. Такой режим позволяет сразу начинать движения без прогрева. Некачественное исполнение узла дроссельной заслонки (несоответствие ТУ), как правило, вызывает следующие неисправности в работе:
Медленное снижение оборотов двигателя после закрытия дроссельной заслонки.
Затруднённый пуск горячего двигателя с закрытым дросселем.
Двигатель глохнет при резком снижении нагрузки (выключение КПП, движение накатом).
Перечисленные неисправности могут быть вызваны и другими причинами, например, сбоями в системе зажигания, топливоподачи, неисправностью датчика расхода воздуха. Но эти неисправности, если они есть, проявляются и на других режимах работы двигателя. Располагается на узле дроссельной заслонки и определяет степень открытия дроссельной заслонки. Система использует показания датчика дроссельной заслонки для следующих режимов работы:
На режиме пуска двигателя подача топлива корректируется по степени открытия дросселя (увеличивается при открытом дросселе). Но при открытии дросселя более 90% система перестает подавать топливо в двигатель. В этом режиме можно реализовать продувку двигателя при прокрутке стартером.
Во время движения автомобиля, при показаниях датчика дроссельной заслонки выше определенного значения, система с учетом оборотов двигателя обеспечивает мощностной режим топливоподачи. Расчет времени открытия форсунки в зависимости от расхода воздуха определяется параметром обогащения состава топливно-воздушной смеси по таблицам, зашитым в памяти блока управления.В резервных режимах, при выходе из строя датчика массового расхода воздуха, показания датчика дроссельной заслонки определяют наполнение цилиндров воздухом для расчета топливоподачи в двигатель и установки угла опережения зажигания.
В рабочих режимах положение дроссельной заслонки 0% означает выход на режим регулятора холостого хода. В этом случае задача системы — поддерживать заданный уровень частоты вращения коленчатого вала в зависимости от показаний датчика температуры и скорости автомобиля. Блок управления пытается снизить обороты двигателя, управляя режимом блокировки топливоподачи до границы, с которой включается программный регулятор холостого хода, обеспечивающий с помощью шагового мотора и угла опережения зажигания стабильную работу двигателя на заданных оборотах.
Нужно понимать, что система пользуется показаниями датчика положения дросселя не только для определения режима работы (холостой ход, мощностной режим, продувка двигателя при запуске, работа в резервных режимах), но и проводит коррекцию подачи топлива в двигатель в зависимости от скорости изменения положения дроссельной заслонки (в аналогии с карбюратором — ускорительный насос). Как правило, показания датчика нарушаются в положениях, где он чаще всего и работает. Это нулевое (или близкое к нему) положение дроссельной заслонки. Характерные сбои в работе системы при неисправном датчике дроссельной заслонки:
Зависание оборотов холостого хода на уровне 1500-2500 в
зависимости от температуры двигателя (Это резервный режим работы системы, он вызван неисправностью датчика, система в этом случае не регулирует обороты холостого хода).
Резкие рывки при наборе скорости. Вызываются резкими провалами в показаниях положения дроссельной заслонки.
Регулятор холостого хода является исполнительным устройством и его самодиагностика в системе не предусмотрена.
Поэтому при неисправностях регулятора холостого хода лампа «CHECK ENGINE» не загорается.
Шаговый мотор установлен в байпасном канале узла дроссельной заслонки. Положение вала шагового мотора определяет проходное сечение байпасного канала, необходимое для устойчивой работы двигателя при закрытой дроссельной заслонке. Неисправность датчика положения дроссельной заслонки достаточно хорошо определяется системой самодиагностики блока управления. При плохом датчике загорается лампа «Проверь двигатель» и в память блока заносится соответствующий код неисправности. Когда появляется такой код неисправности, а вы не заметили сбоев в работе системы, проверьте крепление датчика и его разъем. В системе управления шаговый мотор выполняет несколько основных функций:
Система отслеживает с помощью шагового мотора такое сечение байпасного канала (в зависимости от оборотов двигателя, скорости автомобиля и положения дроссельной заслонки) при котором в случае сброса нагрузки должно быть обеспечено плавное снижение оборотов коленчатого вала до заданных оборотов холостого хода. Прогрев двигателя после запуска. Система определяет тепловое состояние двигателя по датчику температуры охлаждающей жидкости и автоматически устанавливает обороты холостого хода (минимальные обороты при закрытой дроссельной заслонке). С помощью шагового мотора в этом случае задается такое сечение байпасного канала, при котором двигатель способен поддерживать эти обороты.
При открытии дроссельной заслонки весь воздух в двигатель поступает через сечение дроссельной заслонки, а байпасный канал должен быть подготовлен к резкому закрытию дросселя и сбросу нагрузки (отключение КПП).
Третьей функцией шагового мотора является компенсация контролируемой блоком управления нагрузки (включение/выключение вентилятора, кондиционера и т.д.). В режиме холостого хода система корректирует положение шагового мотора до включения/выключения нагрузки. Тем самым компенсируется мощность, подключаемой этой нагрузки (компенсирует провал оборотов в режиме холостого хода).
Шаговый мотор и называют регулятором холостого хода, но он выполняет лишь перечисленные функции. Заданные обороты холостого хода в пределах 800 об/мин поддерживаются в основном быстрым контуром управления — регулятором по углу опережения зажигания.
Принцип работы датчика холостого хода (рхх)
В момент, когда мы включаем зажигание, шток на регуляторе холостого хода полностью выдвигается и упирается в специальное калибровочное отверстие в дроссельном патрубке. После, датчик отсчитывает шаги и возвращает клапан в исходное положение. Положение исходного клапана зависит от прошивки: к примеру январь 5.1 – 120 шагов на прогретом двигателе, Bosch – примерно 50 шагов на прогретом двигателе.
На прогретом двигателе в момент регулировки датчик находится на отметке 30-50 шагов. С увеличением или уменьшением шагов, объём воздуха, проходящий через калибровочное отверстие, постоянно изменяется. При чём, если шток вытягивается – то шаги увеличиваются и наоборот. Ход штока составляет 250 шагов.
Раскачка оборотов в режиме холостого хода зависит именно от этого контура и влияния возмущений в системе топливоподачи. Шаговый мотор определяет медленную составляющую в регулировании, отслеживая режимные переходы системы управления.
Выход из строя шагового двигателя приводит к явным сбоям в системе:
1) Глохнет на холостом ходу
2) Плавают обороты холостого хода
3) При запуске холодного двигателя отсутствуют повышенные обороты
4) Глохнет в момент снятия передачи на коробке.
Система будет правильно отрабатывать ваши попытки закрыть или открыть байпасный канал. Но при этом при эксплуатации автомобиля останутся зависания оборотов при отключении КПП и заглохания двигателя при движении накатом и невозможность запуска двигателя без помощи дроссельной заслонки. Появление в комплексе этих неисправностей говорит о неисправности шагового двигателя или его цепей управления. И даже при исправных цепях, шаговый мотор может просто неправильно выполнять команды системы управления. Вместо движения вперед отрабатывает движение назад или наоборот. Это можно наблюдать, если снять шаговый мотор и специальным тестером задавать ему движения в разные стороны. По температуре двигателя система определяет тепловое состояние двигателя и принимает решение о коррекции параметров (обороты ХХ, обогащение подачи топливной смеси, угол опережения зажигания, включение — выключение вентилятора и т.д.). Совет: Если смазывать механическую часть шагового мотора литолом, то он работает значительно лучше и дольше. После смазки плохой шаговый мотор часто восстанавливает свою работоспособность. Показатель температуры двигателя на панели приборов автомобиля не имеет отношения к этому датчику, и его показания могут не совпадать с показаниями тестера, поскольку температура в этом случае определяется другим датчиком, установленным в рубашке двигателя, а также зависит от состояния самой панели управления. Выход из строя датчика температуры приводит к целому набору неисправностей в автомобиле, от явной невозможности запустить двигателя до непонятного повышения расхода топлива. Если отсоединить разъем датчика на работающем двигателе, то система управления перейдет на резервный режим работы по температуре, при котором будет включен вентилятор охлаждения (одна из быстрых проверок цепи управления вентилятором). Если запускать двигатель с отключенным датчиком температуры, то нужно учитывать, что система в этот момент температуру считает нулевой, по мере работы такого двигателя система управления сама выставляет температуру (увеличивает) в зависимости от времени работы, вентилятор при этом будет всегда включён. Пуск горячего или холодного (с температурой ниже 10 градусов) двигателя с отключенным датчиком температуры будет затруднительным. Не торопитесь менять датчик температуры, тем более что выход его из строя легко проверяется системой само диагностики. Неисправности, связанные с датчиком температуры — несвоевременное включение или просто не включение вентилятора (тосол кипит), медленный прогрев двигателя (повышенный расход топлива) — зачастую имеют другие причины: выход из строя термостата, не герметичность системы охлаждения (пробка на расширительном бачке не герметична), плохое качество тосола, неисправность цепей управления вентилятора и т.д. Прежде чем менять датчик температуры, убедитесь в исправности цепей его подключения и правильном соединении разъемов (возможно при размыкании и замыкании разъема погнута ножка в клеммном соединении самого датчика).
Модуль зажигания Модуль зажигания отвечает в системе за формирование высоковольтного напряжения на свечах зажигания. Модуль включает в себя высоковольтные ключи (коммутатор и 2 катушки зажигания). Блок управления формирует для модуля низковольтовые управляющие сигналы, согласованные с положением коленчатого вала. Конец сигнала определяет начало искрового зажигания, длительность определяет степень заряда катушки и зависит от напряжения бортовой сети. Автомобиль, оснащенный ЭСУД, более чувствителен к плохой работе системы зажигания, чем автомобиль с карбюратором. Пропуски воспламенения в цилиндрах двигателя в большей степени влияют на успешный запуск холодного двигателя, влияют на повышенный расход топлива, приводят к выходу из строя нейтрализатора, резко ухудшают ездовые качества автомобиля. Выход из строя модуля, как правило, приводит к потере зажигания сразу в двух цилиндрах (вылетает один канал). Это легко проверить пробником искрового разряда. Другое дело, когда модуль зажигания дает на первый взгляд нормальное зажигание, но приводит к сбоям на холодном двигателе (еще хуже — на непрогретом двигателе).