Меню

Циркуляционный расход масла это

Система смазки двигателя

Расчёт смазочной системы включает определение вместимости смазочной системы, конструктивных параметров масляного насоса, радиатора.

Вместимость смазочной системы определим из условия обеспечения эксплуатационной надёжности двигателя:

где q=0,07 л/кДж – удельная ёмкость смазочной системы.

Циркуляционный расход масла определим с учётом количества теплоты, которая должна быть перенесена маслом от деталей двигателя в охладитель:

где См=2 кДж/кгК – удельная теплоёмкость масла;

ρм=910 кг/м³ — плотность масла;

ΔТм=12 К – степень подогрева масла в двигателе;

Qм — количество отводимой от двигателя теплоты определяется по формуле:

где qм=0,018 – относительный теплоотвод через смазочную систему;

Gт=10 кг/ч – часовой расход топлива.

Расчет масляного насоса

Производительность масляного насоса определим на основании потребного циркуляционного расхода масла. В связи с необходимостью обеспечения требуемого давления масла в магистрали при работе двигателя при различных скоростных диапазонах с разной температурой масла и при износе трущихся пар двигателя и насоса действительная подача насоса будет:

Расчётная подача насоса равна:

где ηн=0,7 – объёмный коэффициент подачи насоса, учитывающий утечки масла через неплотности и влияние других факторов.

Допустимую окружную скорость шестерни на внешнем диаметре принимаем равной Vш=10 м/с.

Частота вращения вала насоса будет:

Наружный диаметр шестерни насоса равен:

Стандартный модуль зацепления принимаем равным m=3.

Число зубьев шестерни принимаем равным z=7.

Уточняем наружный диаметр шестерни:

Требуемую длину зубьев (ширину шестерни) определяем из выражения:

Высота зуба будет:

Диаметр начальной окружности шестерни равен:

Мощность, затрачиваемую на привод масляного насоса определим по формуле:

где рн=0,4 МПа – рабочее давление масла в системе;

ηмн=0,88 – механический КПД масляного насоса.

Расчет масляного радиатора

Расчёт масляного радиатора заключается в определении площади охлаждающей поверхности радиатора, необходимой для передачи теплоты, отводимой маслом от двигателя к охлаждающему телу.

Количество теплоты, отдаваемой радиатором будет:

Средняя температура масла в радиаторе будет:

где Трвых=354 К – температура масла на выходе из радиатора;

— температура масла на входе в радиатор.

Здесь ΔТм=14 К – степень подогрева масла в двигателе.

Средняя температура охладителя, проходящего через радиатор равна:

где Тохлвх=313 К – температура охладителя на входе в радиатор;

ΔТохл=14 К – степень подогрева охладителя.

Коэффициент теплопередачи определим по формуле:

где α1=200 Вт/м²К – коэффициент теплоотдачи от масла к стенкам радиатора;

— толщина стенки радиатора;

λт=15 Вт/мК – коэффициент теплопроводности стенок радиатора;

Читайте также:  Найди мне диски для машины

α2=2500 Вт/м²К – коэффициент теплоотдачи от стенок радиатора к охладителю.

Требуемую охлаждающую поверхность масляного радиатора вычислим по формуле:

В проделанной нами работе были выполнены динамические расчёты двигателя: выполнены кинематические и динамические расчёты кривошипно-шатунного механизма, вычислены силы и построены графики сил, действующих на кривошипно-шатунный механизм.

Еще о транспорте:

Основные подсистемы карьерного автомобильного транспорта
Автотранспортные средства, обычно, работают в комплекте с экскаваторами и образуют экскаваторно-автомобильный комплекс (ЭАК). Эти комплексы, в зависимости от складывающихся функциональных связей, могут быть простые и сложные. Структурная схема сложного ЭАК приведена на рисунке 2.1 ЭАК-1 …………………………… .

Определение технической производительности перегрузочной машины и режимов работы её механизмов
Для чертежа технологической схемы выбираем вагон: (приложение 8) [3] Тип вагона: полувагон 4-осный Грузоподъёмность: 69 т Длина вагона: 12,7 м Ширина вагона: 2,88 м Высота стенки: 2,06 м По технологической схеме (рисунок 1.) получаю: R1= 19,8 м R2= 8 м ΔR=R2 — R1=19,8-8=11,8 м Hпод= 7,3м Ноп= .

Выбор сечений элементов рычажной передачи тормоза вагона
Определение усилий, действующих на элементы рычажной передачи Искомые усилия, действующие в местах всех шарнирных соединений определяются из условия равновесия рычагов ТРП в тормозном положении, рассматривая последовательно передачу усилий со штока ТЦ на тормозные колодки. Из условия равновесия рыч .

Расчет масляной системы

Ориентировочно количество масла Vм составляет (0,04. 0,09)Nе для бензиновых двигателей легковых автомобилей; (0,07. 0,1)Nе для бензиновых двигателей грузовых автомобилей; (0,11. 0,16)Nе для дизелей грузовых автомобилей.

Более точно циркуляционный расход Vм масла зависит от количества отводимой теплоты Qм:

Qм= (0,015. 0,030) Q, или , (18.1)

где Q – количество теплоты, выделяемой топливом при сгорании в течение 1с, qм = Qом/Qт – относительный теплоотвод через СС;
qм = 0,015…0,02 – ДсИЗ; qм = 0,02…0,025 – дизели; qм = 0,04…0,06 – дизели с охлаждаемыми поршнями, HT – низшая теплотворная способность топлива, кДж/кг; gе – удельный расход топлива на режиме эффективной мощности; Nе – эффективная мощность.

Циркуляционный расход масла, м 3 /с, равен

где rM – плотность масла, r = 900 кг/м 3 ; СМ = 2,094 – теплоемкость масла, кДж/(кг К); DTM – температура нагрева масла в двигателе, К, перепад температур между выходом и входом ССDt = 10…15 °С в ДсИЗ и Dt = 20…25 °С в дизелях.

Этот расход увеличивают в два раза для стабилизации давления в СС, кроме того, для компенсации утечек через зазоры вводят коэффициент hМ = 0,6. 0,8, тогда

Читайте также:  Ремонт обслуживание эксплуатация автомобиля ситроен

где VР – производительность насоса, м 3 /с; р – давление масла, у карбюраторного двигателя р = 0,3. 0,5 МПа, в дизелях р = 0,3. 0,7 МПа, hН = 0,85 – 0,9 механический КПД насоса.

Тогда Vр м 3 /с будет равно:

(10…11)Nе×10 -6 – дизели с охлаждаемыми поршнями.

где Vнагн – подача нагнетательной секции насоса.

Маслонасос

В современных двигателях применяют масляные насосы шестеренчатого типа с внешним (рис. 18.2, а) и внутренним зацеплением.

Во втором случае используют как эвольвентное (рис. 18.2, б), так и эпициклоидальное зацепление (рис. 18.2, в).

Размеры шестерен, а следовательно, и производительность масляных насосов целесообразно определить исходя из циркуляционного расхода масла через двигатель, необходимого для отвода теплоты Qом, воспринимаемой маслом.

Действительную подачу насоса задают большей величины циркуляционного расхода с целью обеспечения необходимого давления масла в магистрали во всем диапазоне частот вращения и при износе трущихся пар двигателя и насоса, м 3 /с:


Размеры шестерен с учетом объемного коэффициента подачи насоса определяют из выражения, м 3 /с:

/hн , (18.5)

где Vт – теоретическая подача насоса, м 3 /с, необходимая по тепловому расчету;

hн – объемный коэффициент подачи насоса, равный hн = 0,6…0,85;

dw – диаметр начальной окружности ведущей шестерни, мм;

h – высота зуба; b – длина зуба, мм;

nн – частота вращения ведущей шестерни, мин -1 .

Итак, Vт должно быть равно Vнагн, полученному из теплового расчета по формулам (18.3), (18.4).

Параметры маслонасоса определяют следующим образом [8].

Для современных шестеренчатых насосов с числом зубьев колес 8…14 при окружной скорости 10…20 м/с и при отношении b/m в пределах 6…10 модуль зуба шестерни, мм, равен

, (18.6)

где Vд – действительная производительность насоса, м 3 /с.

(18.7)

Vт – теоретическая (потребная) производительность насоса, hн – механический КПД насоса.

Выбрав число зубьев z и модуль m, находят ширину зуба b и диаметр начальной окружности, мм:

. (18.8)

Для некоррегированных зубчатых колес , для коррегированных .

Затем рассчитывают параметры разгружающей канавки:

Глубина канавки, мм, равна

. (18.9)

Смещение от межцентровой оси колес (рис. 18.3) , или y и Cmax выбирают по табл. 18.2.

Значения для m=1 и b=1

При принятом боковом зазоре между зубьями, равном 0,08m, площадь канавки » (0,08…0,1)m 2 .

Мощность, кВт, необходимую для привода насоса, находят из выражения:

, (18.10)

hм = 0,85…0,9 – механический КПД насоса.

Масляные фильтры

Применяют фильтры грубой и тонкой очистки. Для грубой очистки используют фильтры с сетчатыми, пластинчато-щелевыми и ленточно-щелевыми элементами для задержания частиц 50. 120 мкм, а для тонкой очистки частиц 50. 40 мкм применяют элементы из бумаги, тканей, картона, хлопчатобумажной пряжи (рис. 18.5).

Центрифуга (рис. 18.6)

Применяют центрифуги с внешним гидравлическим реактивным приводом и с внутренним бессопловым и сопловым приводом.

В современных центрифугах подача масла под давлением 0,25. 0,6 МПа обеспечивает вращение ротора со скоростью 5000. 8000 мин -1 .

Из теорем импульса сил можно определить реактивную силу струи

, (18.11)

где rM – плотность масла, кг/м 3 ;

Vр – расход масла через сопло центрифуги, м 3 /с;

e – коэффициент сжатия струи масла; e = 0,9. 1,1;

Fc – площадь отверстия сопла, м 2 ;

R – расстояние оси сопла от оси вращения.

где а –момент сопротивления трогания в начальный моментпо опытным данным,Н×м, a = (5…20) 10 -6 , b – сопротивление при вращении, Н×м/мин -1 , b = (0,03…0.10) 10 -6 ; n – частота вращения центрифуги.

Из совместного решения уравнений (18.11) и (18.12) получим

. (18.13)

Масляные радиаторы

Различают воздушно-масляные радиаторы и жидкостно-масляные радиаторы.

У воздушных масляных радиаторов следующие преимущества: меньшая масса, простое и надежное устройство, возможность получения большего температурного напора.

Недостаток – специальное перепускное устройство для перепуска холодного масла. Радиатор начинает работать по мере прогрева масла, когда давление в трубопроводе достигнет 0,15. 0,2 МПа.

У жидкостных масляных радиаторов основное преимущество –быстрый прогрев масла после пуска двигателя.

Включение радиатора в смазочную систему возможно последовательно или параллельно, или параллельно с подачей от дополнительной секции маслонасоса. Оптимальна последняя схема, так как не снижает давление в основной магистрали.

tвх , tвых – температура масла на входе и выходе из радиатора, м 3 /с;

Охлаждающая поверхность радиатора:

, (18.15)

где и – разность средних температур масла в радиаторе и воздуха, °С; Kм – коэффициент теплопередачи.

Для жидкостно-масляных радиаторов можно принять: Км = =120. 320 Вт/м 3 К для гладких трубок. Для трубок с завихрителями Км = 800. 1000 Вт/м 2 К.

Дата добавления: 2016-02-16 ; просмотров: 2172 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Adblock
detector