Тепловой двигатель
Теплово́й дви́гатель — устройство, совершающее работу за счет использования внутренней энергии топлива, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. (Возможно использование изменения не только объёма, но и формы рабочего тела, как это делается в твёрдотельных двигателях, где в качестве рабочего тела используется вещество в твёрдой фазе.) Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие топлива. Это возможно при нагревании рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и охладителем.
Содержание
История
Первой известной нам тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ (или в Ι ?) веке н. эры в римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени (например, тогда ещё не был изобретён подшипник).
Теория
Работа, совершаемая двигателем, равна:
, где:
— количество теплоты, полученное от нагревателя,
— количество теплоты, отданное охладителю.
Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:
Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя() и холодильника(
):
Типы тепловых двигателей
Двигатель Стирлинга
Дви́гатель Сти́рлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.
Поршневой двигатель внутреннего сгорания
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые; по рабочему циклу непрерывного действия, 2- и 4-тактные; по способу приготовления горючей смеси с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0,4-0,5. Первый двигатель внутреннего сгорания сконструирован Э. Ленуаром в 1860. В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит за четыре хода поршня, за четыре такта. Поэтому такой двигатель и называется четырёхтактным. Цикл двигателя состоит из следующих четырёх тактов: 1.впуск, 2.сжатие, 3.рабочий ход, 4.выпуск.
Роторный (турбинный) двигатель внешнего сгорания
Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия. Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту не приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще. Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.
Роторный (турбинный) двигатель внутреннего сгорания
Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.
Реактивные и ракетные двигатели
Твёрдотельные двигатели
(источник журнал “Техника молодёжи“)== == Здесь в качестве рабочего тела используется твёрдое тело. Здесь изменяется не объём рабочего тела, а его форма. Позволяет использовать рекордно малый перепад температур.
Тепловые двигатели
Тепловой двигатель – это устройство, преобразующее тепловую энергию в механическую работу.
Иногда дается такое определение:
Тепловой двигатель преобразует внутреннюю энергию рабочего тела в механическую.
Итак, для теплового двигателя необходимо рабочее тело (газ или пар), нагреватель. Кроме того, в системе должна быть разница температур, чтобы рабочее тело, после совершения работы, могло отдать теплоту; то есть кроме нагревателя, нужен холодильник.
Классификация тепловых двигателей
Различие между теплотой и внутренней энергией условно, оно принято в термодинамике, отражает специфику рассматриваемых этой наукой объектов. Если пар в котле нагревается внешним источником, или система охлаждается, отдавая тепло в окружающую среду, то говорят о поступающей извне или отдаваемой в окружающую среду теплоте. Если в цилиндре воспламеняется бензин, и расширяющийся газ толкает поршень, то говорят о преобразовании внутренней энергии рабочего тела.
В связи с этим термодинамике принята классификация устройств:
- Двигатели внешнего сгорания, преобразующие внешнюю теплоту (паровая машина, паровая турбина)
- Двигатели внутреннего сгорания, преобразующие внутреннюю энергию топлива (ДВС, реактивный двигатель)
Первый двигатель внешнего сгорания был изобретен в древнем Риме. Пар, направленный по изогнутым трубам из сферы с кипящей водой, заставлял ее вращаться. Это был просто эффектный эксперимент, игрушка, ее не использовали для работы. Производство машин и применение их в промышленности не было актуально при рабовладении, оно началось тогда, когда стало экономически выгодным.
Отметим, что к тепловым двигателям относятся устройства с принципиальными различиями в конструкции и логике работы: турбина, реактивный двигатель и циклические двигатели.
Термодинамика, как наука, сформировалась в процессе работы над цикличными двигателями. В следующем разделе пойдет речь о цикличных двигателях, их КПД, а также о втором начале термодинамики.
Преобразование энергии в тепловых двигателях
Создание парового двигателя ознаменовало начало научно-технической революции, но сами паровые двигатели поначалу были несовершенны. Они развивали большую мощность, но потребляли слишком много топлива.
Если сравнить работу первых двигателей с тягловой силой лошади, то окажется, что лошадь гораздо эффективнее использует «горючее» — овес и сено. Ученые отмечали, что организм «сжигает» еду: ведь человек и животные вдыхают кислород, а выдыхают углекислый газ и водяной пар; так же поступает топка с горящими дровами.
Именно тогда научились считать калории. Энергию пищи оценили по тому количеству теплоты, которая выделится при ее сжигании. По шкале «калорийности» можно сравнивать овес, уголь и бензин. И по этой шкале первые паровые двигатели были крайне неэффективны: только 1\% — 2\% сгоревших калорий превращались в полезную работу.
Делались попытки усовершенствовать машины, иногда они давали лучший эффект, иногда худший; требовалась теоретическая база для того, чтобы добиться наилучшего варианта.
Основоположники термодинамики прежде всего решали вопрос: может ли вся теплота, передаваемая паровой машине, преобразоваться в работу? В механике преобразование потенциальной энергии в кинетическую может происходить с очень малыми потерями. В основном мешает трение, но во многих задачах трением можно пренебречь. Представим, что мы так же сведем к нулю трение поршня о цилиндр, непроизводительные потери тепловой энергии. Можно ли представить себе идеальный циклический двигатель, в котором вся теплота переходит в работу?
По первому началу термодинамики, теплота расходуется на работу и увеличение внутренней энергии:
Q = A + DU
Пусть DU = 0. Теплота заставила пар расширяться, пар привел в движение поршень, тот совершил работу. При этом температура пара и его внутренняя энергия не изменилась, Пренебрежем потерями и допустим, что вся теплота перешла в механическую работу: Q = A
Но мы рассматриваем цикличный двигатель. Поршень переместился, совершив работу; теперь его нужно вернуть в исходное состояние.
Если перемещать поршень, сжимая пар, то придется совершить работу не меньшую, чем А. Но это значит, что никого выигрыша не произошло, и коэффициент полезного действия нулевой, даже при отсутствии потерь!
Чтобы уменьшить работу по обратному перемещению поршня, разрешим внутренней энергии меняться. Если пар охладить, его давление уменьшится, и работа по перемещению поршня будет меньше, чем совершенная в рабочем цикле.
Вот эта разность работ и будет полезной отдачей двигателя.
На графике p(v) прямой и обратный ход поршня показан линиями abc и cda, образующими замкнутую фигуру. Площадь замкнутой фигуры abcd соответствует полезной работе. Площадь фигуры V1abcV2 – это работа прямого хода, площадь V2cdaV1 – соответствует работе обратного хода.
Таким образом, тепловому двигателю нужен не только нагреватель, но и холодильник; чаще всего в роли холодильника выступает окружающая среда, которой передаются остатки тепла
В идеальном случае совершенная за цикл работа соответствует разнице между теплотой, которое имело нагретое рабочее тело, и той теплотой, которая осталась у рабочего тела после охлаждения:
Коэффициент полезного действия идеального двигателя равен отношению работы к полученной от нагревателя теплоте:
Эта формула показывает предел КПД, который не может быть превышен тепловым двигателем при определенных параметрах нагревателя и холодильника. Реальный КПД двигателя зависит от его конструкции, и он всегда меньше идеального значения.
Итак, КПД двигателя всегда меньше единицы, поскольку часть тепловой энергии должна отдаваться холодильнику. Это является отражением второго начала термодинамики
Одна из формулировок второго начала термодинамики:
Невозможен круговой процесс, единственным результатом которого было бы производство работы за счёт охлаждения теплового резервуара. (Такой процесс называется процессом Томсона).
Адиабатный процесс и цикл Карно
При конструировании теплового двигателя важную роль сыграло понимание адиабатного процесса.
Адиабатный процесс в идеальном газе происходит без обмена теплотой с окружающей средой.
Математическая формула адиабатного процесса:
p*V k = const
где p – давление, V – объем, k – показатель адиабаты, равный отношению теплоемкости газа при постоянном давлении к теплоемкости при постоянном объеме.
Рассмотрим, как применяется адиабатный процесс в термодинамике.
Задача конструкторов при разработке двигателя – приблизиться к идеальному значению КПД. Для этого нужно определить наилучший термический цикл тепловой машины и конструкцию, соответствующую двигателю с таким циклом.
Правило для тепловых машин сформулировал в 1824 году Санди Карно, французский ученый. В своей теоретической модели он использовал свойства идеального газа.
Его идея заключалась в том, чтобы расширение газа при прямом ходе шло изотермически, без изменения температуры, и так же изотермически, но при пониженной температуре, происходило сжатие газа при обратном ходе.
Для перехода между верхней и нижней изотермами Карно предложил использовать адиабатическое расширение и адиабатическое сжатие.
Наиболее наглядно цикл Карно изображается на TS диаграмме, по которой можно оценить изменение энтропии системы и ее температуры:
Изменение объема и давления при цикле Карно можно видеть на PS диаграмме:
Изображение цикла на TS диаграмме показывает зависимость КПД от абсолютных значений температуры нагревателя и холодильника:
Последняя формула позволяет сделать важный вывод: КПД двигателя зависит от абсолютной температуры холодильника, и наибольший КПД=1 может быть достигнут только при температуре холодильника TX = 0°K, или t= -273°C.
Реальный тепловой двигатель имеет меньший КПД, чем идеальный двигатель Карно, поскольку обеспечить полностью адиабатный процесс, без теплообмена с окружающей средой, невозможно. Кроме того, изотермическое расширение и сжатие реального газа возможно только при достаточно медленных процессах, а их ускорение приводит к изменению температуры.
Теория и практика
Как отразились работы теоретиков на качестве паровых двигателей? Начался быстрый процесс совершенствования этой техники. В семидесятые годы девятнадцатого века паровозы отчаянно дымили и имели КПД = 3\%, а в 1910 году паровозы дымили не меньше, но имели КПД = 7-9\%. Это большой прогресс, но подняться выше при разработке паровых машин не удалось.
На смену паровозам пришли двигатели внутреннего сгорания: их КПД сразу же превысил паровые двигатели, составил 25\%. Современные дизельные двигатели, с электронной системой управления, имеют КПД=40\%.
Является ли это пределом? Для двигателей внутреннего сгорания, пожалуй, является. Но есть более производительные тепловые машины: это турбины. Нагретый газ, непрерывной струей вырываясь из сопла, вращает турбину; это не цикличный, а постоянный процесс, и при его реализации без особого труда достигается КПД=60\%. Недаром сейчас активно разрабатываются турбодвигатели.