Меню

Синхронный двигатель схема замещения

Синхронные машины

Если во вращающемся магнитном поле разместить на валу ротора магнит так, чтобы ось, соединяющая его полюса, была направлена вдоль вектора индукции магнитного поля, то вращающееся магнитное поле вовлекает во вращение магнит вместе с валом ротора, который вращается синхронно с магнитным полем. Однако для этого необходимо раскрутить ротор до скорости вращения поля (условие синхронизма). На ротор действует вращающий момент, и энергия тока превращается в механическую энергию электродвигателя, который получил название синхронного.

Синхронные машины используются в качестве источников электрической энергии (генераторов), электродвигателей и синхронных компенсаторов.

Синхронные генераторы гидроэлектростанций вращаются с помощью гидротурбин и носят название гидрогенераторов. Кроме электростанций синхронные генераторы находят применение в установках, требующих автономного источника питания.

Синхронные двигатели переменного тока используются с механизмами средней и большой мощности при редких пусках, требующих постоянной частоты вращения. К таким механизмам относятся компрессоры, вентиляторы, насосы и т.д.

Синхронный компенсатор предназначается для улучшения коэффициента мощности электротехнических установок (компенсации индуктивной реактивной мощности).

Дополнительно по теме

Схема замещения синхронного двигателя и векторная диаграмма

Конструктивно синхронная машина состоит из статора и ротора. Статор аналогичен статору асинхронной машины, а ротор представляет собой постоянный магнит, поле которого создается обмоткой возбуждения, по которой пропускается постоянный ток. Питание обмотки возбуждения осуществляется через скользящий контакт между контактными кольцами и неподвижными щетками. Особенностью синхронной машины является возможность работы как в режиме двигателя, так и в режиме генератора.

Частота ЭДС переменного тока в синхронной машине зависит от частоты вращения ротора и числа пар полюсов, f1 = рn/60. Действующее значение ЭДС, индуцируемой в проводниках

Взаимодействие вращающегося поля статора и поля постоянного магнита ротора вызывает появление вращающего момента, вследствие чего ротор вращается в том же направлении, что и поле статора (n1=n). Скольжение синхронной машины равно нулю.

На рисунке Хс — синхронное индуктивное сопротивление; q — угол нагрузки

В соответствии со схемой уравнение имеет вид:

Характеристика зависимости момента двигателя от угла нагрузки имеет вид синусоиды и выражает работу как двигательного, так и генераторного режима.

С целью получения запаса устойчивости за номинальный момент синхронного двигателя принимается 0,5Мн, которому соответствует угол q=30°.

Важным преимуществом синхронного двигателя является способность регулировать потребляемую из сети реактивную мощность путем изменения тока возбуждения. Рассмотрим зависимости тока статора двигателя от тока возбуждения.

При перевозбуждении Iдв имеет емкостной характер, а при недовозбуждении — индуктивный. Таким образом, синхронный двигатель может быть использован в качестве компенсирующего устройства для регулирования реактивной мощности.

Характеристики имеют границу устойчивости, вдоль которой уменьшение тока возбуждения приведет к опрокидыванию двигателя или «выпаданию из синхронизма». Граница устойчивости соответствует режиму Мдв= Мген.

Недостатком синхронного двигателя является необходимость возбудителя для запуска, так как при равенстве синхронной частоты вращения поля статора и частоты вращения поля ротора пусковой момент отсутствует. Наиболее распространен асинхронный запуск. В этом случае на полюсах двигателя размещается короткозамкнутая обмотка. При пуске статор подключают к сети. Возникающее магнитное поле индуцирует в этой обмотке ЭДС и токи, в результате чего создается электромагнитный момент, как и у асинхронного двигателя. При этом обмотка возбуждения отключена от источника постоянного тока, но замкнута на активное сопротивление с целью уменьшения напряжения на ее зажимах при пуске. При достижении двигателем частоты вращения, близкой к синхронной, обмотка возбуждения переключается на источник постоянного тока. В этом случае говорят, что двигатель «втянулся в синхронизм».

Читайте также:  Течь масла двигателя волга

Генераторный режим синхронной машины

Так как выражения электромагнитной мощности и момента у синхронной машины аналогичны и в двигательном и в генераторном режимах, то достаточно рассмотреть генераторный режим синхронной машины.

При работе синхронной машины в качестве генератора можно регулировать магнитный поток Фо и пропорциональную ему Ео, изменяя ток возбуждения.

Зависимость Ео=f(Iв) называется характеристикой холостого хода генератора.

Остаточная ЭДС у синхронного генератора равна 5-10 В.

Совпадение токов в проводниках по фазе с ЭДС будет только при активной нагрузке,

При включении статора на сопротивление нагрузки по обмотке пойдет ток, который создаст поле, вращающееся относительно статора и неподвижное относительно поля возбуждения основного потока ротора Фо. Совпадение токов в проводниках по фазе с ЭДС будет только при активной нагрузке, при индуктивной ток отстает на 90°, при емкостной опережает на 90°. Рост напряжения при емкостной нагрузке связан с подмагничивающим действием реакции якоря (статора), а снижение при индуктивной нагрузке — размагничиванием.

Упрощенное уравнение электрического состояния одной фазы синхронного генератора без учета поля рассеяния якоря имеет вид:

где Ео — ЭДС холостого хода.

Данному выражению соответствуют схема замещения (рис. а) и векторная диаграмма (рис. б). Из диаграммы следует, что Ео соответствует магнитному потоку ротора Фо, а напряжение U — результирующему магнитному потоку Ф. Отсюда следует, что в генераторном режиме Фо опережает Ф на угол q.

Основной режим работы генератора нагрузочный. Пренебрегая потерями в сопротивлении обмотки якоря, получим из векторной диаграммы значение cosy между напряжением и Еo:

С учетом этого выражения получим зависимость для определения электромагнитной мощности:

Момент равен отношению мощности к частоте вращения:

Выражение в скобках соответствует максимальному моменту Мmax, причем.

Зависимости электромагнитной мощности и момента синхронной машины при различных токах возбуждения показаны на рисунке.

В синхронном генераторе с активно-реактивной нагрузкой при определении электромагнитного момента необходимо учитывать фазовый сдвиг тока относительно магнитного потока или напряжения. Тогда выражение для момента

Синхронный генератор в качестве источника электрической энергии переменного тока включают в распределительную сеть параллельно. При параллельной работе генератора с системой большой мощности его частота и напряжение, а также угловая скорость должны оставаться неизменными при любых изменениях как нагрузки, так и тока возбуждения и момента первичного двигателя. Активную мощность, отдаваемую генератором в сеть, можно регулировать только изменением момента первичного двигателя, а реактивную — изменением тока возбуждения.

Читайте также:  Audi q7 2020 new model тест драйв

Схемы замещения синхронной машины.

Принцип действия синхронного генератора. Приводной двигатель развивает момент , вращая ротор генератора с частотой . По обмотке ротора протекает постоянный ток , её МДС создает магнитный поток ротора . Вращаясь вместе с ротором относительно статора, поток в соответствии с законом электромагнитной индукции (ЭМИ) индуцирует в каждой фазе обмотки статора ЭДС . При замкнутой внешней цепи по обмоткам статора протекает ток нагрузки I, который, в свою очередь, образует МДС статора . МДС создает магнитный поток реакции якоря и поток рассеяния (аналогичный асинхронному двигателю), который замыкается поперёк пазов статора и вокруг лобовых частей обмотки статора. Потоки и наводят в обмотке статора соответственно ЭДС и .

Векторная сумма ЭДС и падение напряжения на активном сопротивлении обмотки статора равно напряжению на выходах генератора U.

Магнитные потоки статора и складываются с магнитным потоком ротора , который, взаимодействуя с током статора I, образует тормозной момент (обратная связь), противодействующий вращающему моменту приводного двигателя. Вырабатываемая статором генератора активная мощность P поступает в электрическую нагрузку.

Уравнение напряжений обмотки статора.На рис 4.9 приведена схема замещения одной фазы статора генератора. Составим по этой схеме уравнения второго закона

(4.1)

Здесь — ЭДС, индуцируемая магнитным потоком ротора ; и – ЭДС, индуцируемая соответственно магнитным потоком реакции якоря и потоком рассеяния; — падение напряжения на активном сопротивлении обмотки статора;U – фазное напряжение статора генератора.

ЭДС и наводятся магнитными потоками и , которые пропорциональны вызывающему их току статора. Поэтому эти ЭДС могут быть выражены через постоянные индуктивные сопротивления и , т.е. и . Тогда .

Обозначим сумму внутренних индуктивных сопротивлений машины , где – синхронное сопротивление.

Обычно

. (4.2)

Схема замещения генератора, отвечающая уравнению (4.2), изображена на рис. 4.8.

Векторная диаграмма синхронного генератора. Векторную диаграмму строят в соответствии с уравнением (4.2). Если нагрузка генератора активно-индуктивная, то вектор тока статора I отстает по фазе на угол от вектора напряжения U, а вектор индуктивного падения напряжения опережает вектор тока на угол (рис. 4.10,а). Сумма векторов U и дает вектор ЭДС . Угол между векторами и U называют углом нагрузки, а угол между векторами и I обозначается . ЭДС соответствует магнитный поток ротора , а напряжению U – результирующий магнитный поток машины (рис. 4.9,б). В генераторном режиме поток опережает поток на угол , чему соответствует сдвиг на тот же угол полюса ротора относительно полюса N и результирующего поля машины. Силовые линии магнитного поля между полюсами показаны тонкими сплошными линиями. В генераторном режиме в результате взаимодействия полюсов и Nобразуется противодействующий момент .

Работа синхронного генератора на автономную нагрузку. Синхронные генераторы работают в автономном режиме (рис. 4.4, б) в тех случаях, когда промышленная электрическая сеть имеет недостаточную мощность или вообще отсутствует, например, на удалённых строительных площадках, нефтяных и газовых промыслах, лесозаготовительных пунктах, морских и речных судах, летательных аппаратах и т.п. Напряжение на выводах автономно работающего синхронного генератора U в большой степени зависит от нагрузки и её характера.

Читайте также:  Срочная замена аккумулятора автомобиля

Зависимость U(I) при n=const, Iв=const и cosφ = const называется внешней характеристикой генератора. Семейство внешних характеристик синхронного генератора при различных cos изображено на рис. 4.10. Характеристики показывают, что напряжение генератора при активно – индуктивной нагрузке ( >0) довольно резко падает, что объясняется размагничивающим действием реакции якоря, а при активно–ёмкостной нагрузке (

По сути, схема замещения асинхронного двигателя аналогична схеме замещения трансформатора. Различие в том, что у асинхронного двигателя электрическая энергия преобразуется в механическую энергию (а не в электрическую, как это происходит в трансформаторе), поэтому на схеме замещения добавляют переменное активное сопротивление r2‘(1-s)/s, которое зависит от скольжения. В трансформаторе, аналогом этого сопротивления является сопротивление нагрузки Zн.

Величина скольжения определяет переменное сопротивление, например, при отсутствии нагрузки на валу, скольжение практически равно нулю s≈0, а значит переменное сопротивление равно бесконечности, что соответствует режиму холостого хода. И наоборот, при перегрузке двигателя, s=1, а значит сопротивление равно нулю, что соответствует режиму короткого замыкания.

Как и у трансформатора, у асинхронного двигателя есть Т-образная схемазамещения.

Более удобной при практических расчетах является Г-образная схемазамещения.

В Г-образной схеме, намагничивающая ветвь вынесена к входным зажимам. Таким образом, вместо трех ветвей получают две ветви, первая – намагничивающая, а вторая – рабочая. Но данное действие требует внесение дополнительного коэффициента c1, который представляет собой отношение напряжения подводимого к двигателю, к ЭДС статора.

Величина c1 приблизительно равна 1, поэтому для максимального упрощения, на практике принимают значение c1≈1. При этом следует учитывать, что значение коэффициента c1 уменьшается с увеличением мощности двигателя, поэтому более точное приближение будет соответствовать более мощному двигателю.

89. Схемы замещения трансформатора.

Одним из средств изучения работы трансформатора является эквивалентная схема замещения, в которой магнитная связь между обмотками трансформатора замещена электрической связью, а параметры вторичной обмотки приведены к числу витков первичной.

Так как в приведенном трансформаторе k=1, то и –E1=E2. В результате точки a1и a2, b1 и b2 имеют одинаковый потенциал, поэтому на схеме их можно соединить, получив тем самым Т-образную схему замещения трансформатора.

Параметры r1, x1 – активное и индуктивное сопротивления первичной обмотки, соответственно.

r2, x2 – приведенные значения активного и индуктивного сопротивлений вторичной обмотки, соответственно.

Zн – полное сопротивление нагрузки.

Магнитный поток не зависит от нагрузки, поэтому его представляют как индуктивное сопротивление xm, активное сопротивление rm, которое обусловлено магнитными потерями и протекающий через них ток холостого хода I. Эти параметры определяются в опыте холостого хода трансформатора.

Изменяя Zн на схеме замещения, можно получить любой режим работы трансформатора. Например, при разомкнутой вторичной обмотке Zн= ∞, что соответствует режиму холостого хода трансформатора, а при Zн= 0 – режиму короткого замыкания. При любых других значениях Zн – режим работы под нагрузкой. Режимы работы необходимы для определения параметров схемы замещения.

При практических расчетах, током холостого хода пренебрегают, тогда схема сводится к упрощенной.

Adblock
detector