Меню

Шины автомобиль коэффициент трения тормозной путь

Зависит ли тормозной путь от ширины шин?

В феврале 2019 года автомобильный журнал За Рулем провел испытания, в которых доказал, что зависит! Хотя, на первый взгляд, данное утверждение может противоречить законам физики.

Это давний спор практиков и теоретиков. Последние в качестве железобетонного аргумента приводят зависимость, которую еще в 1779 году установил француз Шарль Огюстен де Кулон. Она знакома многим как незатейливая формула из школьного курса физики: F = /лN, где F — сила трения покоя, /л — коэффициент трения покоя, а N — сила нормальной реакции опоры, в нашем случае сила прижатия колеса к дороге. Согласно этой формуле максимальная сила трения покоя зависит от силы прижатия и материалов соприкасающихся поверхностей. Нет в этой формуле площади пятна контакта, а значит, и ширины протектора шины! Выходит, ставь любую шину — широкую или узкую — и тормозной путь не изменится?

Не спешите с выводами. Выведенная Кулоном зависимость касается лишь силы трения покоя, которая действует между двумя контактирующими телами и препятствует возникновению относительного движения, то есть справедлива она только при условии, что колёса автомобиля неподвижны (отсутствует качение).

Что такое сила трения покоя?

Представьте автомобиль, неподвижно стоящий на ровном асфальте. Водитель изо всех сил давит на педаль тормоза. Автомобиль прицеплен к тягачу через динамометр, измеряющий силу тяги. Тягач начинает движение, а динамометр фиксирует значение силы, которая будет максимальной в тот момент, когда автомобиль с заторможенными колесами стронется с места. Если выполнить такие замеры, поочередно устанавливая комплекты шин с протекторами разной ширины, но из одинаковой резиновой смеси, то значения максимальной силы будут схожими. В этом случае идеально работает закон Кулона — расхождения полученных значений будут минимальными, в пределах погрешности измерений.

Но как только автомобиль начинает двигаться, зависимость, установленная Кулоном, теряет актуальность, поскольку вместо силы трения покоя, удерживающей заторможенную машину от движения, вступят в действие другие силы трения. А значит, и на автомобиль, который снижает скорость (тормозит), будут действовать другие силы.

Тормозим по другим законам

Как известно, движущееся тело (например, автомобиль) обладает кинетической энергией, равной mv2/2 (где m — его масса, a v — скорость). Чтобы тело остановить, нужно избавить его от этой энергии.

Сущность «классического» (без применения рекуперации) процесса торможения заключается в преобразовании кинетической энергии движения автомобиля в тепловую с последующим рассеиванием тепла в окружающую среду. Чем интенсивнее выделяется и рассеивается тепло, тем короче тормозной путь.

Торможение (читай: преобразование энергии) происходит за счет трения тормозных колодок о поверхность тормозного диска (барабана), внутреннего трения резины протектора (в основном при его деформации в пятне контакта), а также трения протектора об асфальт даже при незначительном проскальзывании.

Максимальная эффективность торможения достигается, когда проскальзывание колес составляет около 15% (так называемое рабочее скольжение). На летних шинах такой эффект возникает благодаря сочетанию внутреннего трения резины при деформации протектора, сдвига мелких фракций на поверхности дороги, а также поглощения энергии подвеской -и используется при работе АБС, которая допускает незначительное проскальзывание шины относительно дороги. Таким образом, торможение происходит в переходной стадии трения скольжения. Нужно выйти далеко за пределы элементарной физики, чтобы описать такое сложное взаимодействие различных видов трения. Да еще и присутствующее в этом процессе качение вносит свою лепту, непрерывно выводя из пятна контакта «отработавший» нагретый участок протектора и доставляя в него свежий — более холодный.

Трение неминуемо приводит к нагреву поверхности протектора, а изменение температуры существенно влияет на сцепные свойства резины. Перегрев протектора приводит к снижению его прочности и последующим микроразрушениям (плавлениям) поверхности, дополнительно ослабляя «держак». Характерный пример -торможение на автомобилях без АБС с полной блокировкой колес, с дымком и характерным запахом, оставляющее на асфальте черные следы горелой резины.

Шире шины — выше трение

Что мы имеем на практике? Чем шире протектор шины, тем больше площадь ее пятна контакта с дорогой, а значит, и поверхность трения больше. Следовательно, большее количество кинетической энергии будет преобразовываться в тепловую. К тому же интенсивнее станет рассеивание тепловой энергии и снизится опасность перегрева. Всё это в совокупности обеспечивает более эффективное торможение.

Читайте также:  Как варить полуавтоматом без газа порошковой проволокой кузов автомобиля

Переохлаждение шины тоже негативно сказывается на ее сцепных свойствах. Это особенно хорошо видно по ухудшению результатов «холодного» торможения на мокром асфальте при +6 °С (ЗР, № 3 и № 4, 2018). Резина не имеет возможности прогреться до рабочей температуры, а потому остается недостаточно эластичной и хуже цепляется за микронеровности асфальта. В этой ситуации способность широких шин лучше охлаждаться, наоборот, неблагоприятно отражается на рабочих характеристиках — в холодную погоду их сцепные свойства ухудшаются заметнее, чем у узких.

Еще раз о коэффициенте трения

Очень часто коэффициент трения воспринимают как некую константу, определяющую эффективность торможения. На практике эту величину определяют экспериментальным путем. Ее физический смысл — соотношение между силой трения и силой нормальной реакции (это сила, прижимающая колесо к дороге). Сила трения зависит от характеристик трущихся поверхностей. С одной стороны, это состояние и качество асфальта, с другой — состав и особенности резиновой смеси шины, площадь пятна контакта и распределение сил давления в ней. К тому же на силу трения оказывает влияние температура покрытия и воздуха, влажность и множество других факторов.

Примечательно, что сцепные свойства любых шин изменяются в ходе торможения. В начальный период они слегка улучшаются по мере прогрева резины до наиболее эффективной (рабочей) температуры, а затем — в случае, если резиновая смесь не успевает отдавать тепло и перегревается,-могут ухудшиться.

Как вычислить коэффициент трения? По формуле k = v2/2gs (где v — скорость начала торможения, g — ускорение свободного падения, s — тормозной путь). Значение тормозного пути для каждой шины получаем экспериментальным путем — замеряем при торможении на асфальте. Разные шины обеспечивают разные тормозные пути -следовательно, по своим сцепным свойствам они отличаются друг от друга. Причем чем шире протектор, тем сцепные свойства лучше (конечно, если резиновая смесь не переохлаждена). Результаты наших шинных испытаний доказывают это. И, как вы уже поняли, не противоречат законам физики.

Компрессоры с цифровыми манометрами удобнее стрелочных: не нужно вглядываться в крошечные шкалы и разбираться в непонятных единицах вроде psi. К тому же, эти приборы можно настроить так, чтобы при достижении нужного давления компрессор отключался.

Домкрат владельцам кроссоверов может понадобиться в трёх случаях: при замене пробитого колеса, во время сезонной пере- обувки (для тех, кто это делает сам) и когда нужно приподнять застрявшую машину, чтобы под ложить что-то твёрдое под колёса. При этом д

Поскольку машину придётся поддомкрачивать (где обычному автовладельцу взять подъёмник?), напомним о технике безопасности. Все работы проводите на сухой ровной площадке. Вместо штатного домкрата хорошо бы обзавестись более надёжным подкатным (№ 9, 2017), а

Одним из решающих факторов при покупке нового комплекта шин для части автовладельцев были и остаются сравнительные тесты. Поэтому многие профильные издания и тестирующие организации к началу каждого сезона проводят свои испытания, на основании результатов

Влияние состояния ваших шин на тормозной путь

Влияние состояния ваших шин на качество вождения неоспоримо. После того, как вы узнаете обо всех деталях, вы, безусловно, начнёте относиться к выбору шин более серьёзно!

1. Тормозной путь зависит от смеси резины.
Благодаря самым современным разработкам в области состава резины, тормозной путь любого автомобиля постепенно сокращается. Типичный автомобиль среднего класса два десятилетия назад тормозил со ста километров в час на расстоянии около 40 метров. И никто тогда не считал это плохим результатом. Между тем, сегодня некоторым семейным автомобилям для торможения требуется всего 32-33 метра. Это огромная разница, и достичь такого прогресса невозможно только благодаря совершенствованию тормозных систем.

2. Тормозной путь и на мокрой, и на сухой поверхности зависит от протектора.
На то есть 2 причины. Однако, чтобы описать их, придётся сначала определить взаимосвязь между поверхностью и формой шины и дорогой. Поверхностное соединение представляет собой контакт поверхности шины с поверхностью дороги. Тормозная сила автомобиля в этом случае является результатом давления на колесо и возникновения коэффициента трения между резиной и асфальтом. Взаимосвязь формы шины с дорогой объясняется сцепляемостью поверхности протектора шины. Это явление напоминает кошку, которая вцепляется когтями в то, что вы хотите у неё забрать. Протектор шины влияет на оба вышеописанных явления, поскольку от его структуры зависит не только эффективная площадь контакта между резиной и дорогой, но и количество «коготков», которые будут «цепляться» за микроструктуру асфальта.
Поверхностное соединение шины с проезжей частью в наибольшей степени отвечает за управляемость вашего автомобиля, а когда происходит даже минимальное скольжение, этот параметр может спасти ситуацию, как рука альпиниста, которая найдёт за что ухватиться на скалистом склоне.

Читайте также:  Тест драйв grand santa fe

3. Тормозной путь во время аквапланирования зависит от глубины протектора и его способности отводить воду.

И снова речь зашла о протекторе. Чтобы лучше понять, как шина отводит воду из области контакта колеса с дорогой, попытаемся рассмотреть эту тему несколько нетрадиционно.
Представьте, что борозды протектора – это маленькие ложечки. У вас есть глубокий бассейн, из которого необходимо убрать всю воду. Поскольку в протекторе шины много различных углублений, у вас есть много ложечек и людей, чтобы справиться с этой работой. Вы бережёте своё время – необходимо как можно скорее опорожнить бассейн. А теперь задумайтесь: какой ложкой – чайной или столовой – можно быстрее выполнить данную работу?
Аналогичная дилемма стоит перед нами и в случае шины, которая должна постоянно «выливать» воду из зоны контакта протектора и проезжей части, да к тому же делать это так, чтобы резина по-прежнему могла «цепляться» за асфальт и передавать движущую, боковую или тормозную силу автомобилю. Если протектор у шины глубокий (а это возможно, когда она новая), можно говорить об опорожнении бассейна столовыми ложками. Когда протектор уменьшается, столовые ложки превращаются в чайные. Именно поэтому глубина и узор протектора шины так важны. И то, и другое в определённой ситуации может спасти вашу жизнь или здоровье.

Новые шины это не всегда дорого, мы предлагаем недорогие шины из Китая которые не уступают по качеству именитым брендам. Foman и Goform производят по технологиям корейских шин Хэнкук.

За Рулем: тормозим на широких шинах — результат вас удивит

Зависит ли вообще тормозной путь от ширины шин? Испытания ЗР подтверждают: зависит! Хотя на первый взгляд данное утверждение может противоречить законам физики.

Это давний спор практиков и теоретиков. Последние в качестве железобетонного аргумента приводят зависимость, которую еще в 1779 году установил француз Шарль Огюстен де Кулон. Она знакома многим как незатейливая формула из школьного курса физики: F = µN, где F — сила трения покоя, µ — коэффициент трения покоя, а N — сила нормальной реакции опоры, в нашем случае сила прижатия колесá к дороге. Согласно этой формуле максимальная сила трения покоя зависит от силы прижатия и материалов соприкасающихся поверхностей. Нет в этой формуле площади пятна контакта, а значит и ширины протектора шины! Выходит, ставь любую шину — широкую или узкую — и тормозной путь не изменится?

Не спешите с выводами. Выведенная Кулоном зависимость касается лишь силы трения покоя, которая действует между двумя контактирующими телами и препятствует возникновению относительного движения, то есть справедлива она только при условии, что колёса автомобиля неподвижны (отсутствует качение).

Что такое сила трения покоя?

Представьте автомобиль, неподвижно стоящий на ровном асфальте. Водитель изо всех сил давит на педаль тормоза. Автомобиль прицеплен к тягачу через динамометр, измеряющий силу тяги. Тягач начинает движение, а динамометр фиксирует значение силы, которая будет максимальной в тот момент, когда автомобиль с заторможенными колесами тронется с места. Если выполнить такие замеры, поочередно устанавливая комплекты шин с протекторами разной ширины, но из одинаковой резиновой смеси, то значения максимальной силы будут схожими. В этом случае идеально работает закон Кулона — расхождения полученных значений будут минимальными, в пределах погрешности измерений.

Но как только автомобиль начинает двигаться, зависимость, установленная Кулоном, теряет актуальность, поскольку вместо силы трения покоя, удерживающей заторможенную машину от движения, вступят в действие другие силы трения. А значит, и на автомобиль, который снижает скорость (тормозит), будут действовать другие силы.

Читайте также:  Чип тюнинг для renault trafic

Тормозим по другим законам

Как известно, движущееся тело (например, автомобиль) обладает кинетической энергией, равной mv²/2 (где m — его масса, а v — скорость). Чтобы тело остановить, нужно избавить его от этой энергии. Сущность «классического» (без применения рекуперации) процесса торможения заключается в преобразовании кинетической энергии движения автомобиля в тепловую с последующим рассеиванием тепла в окружающую среду. Чем интенсивнее выделяется и рассеивается тепло, тем короче тормозной путь.

Торможение (читай: преобразование энергии) происходит за счет трения тормозных колодок о поверхность тормозного диска (барабана), внутреннего трения резины протектора (в основном при его деформации в пятне контакта), а также трения протектора об асфальт даже при незначительном проскальзывании.

Максимальная эффективность торможения достигается, когда проскальзывание колес составляет около 15% (так называемое рабочее скольжение). На летних шинах такой эффект возникает благодаря сочетанию внутреннего трения резины при деформации протектора, сдвига мелких фракций на поверхности дороги, а также поглощения энергии подвеской — и используется при работе АБС, которая допускает незначительное проскальзывание шины относительно дороги. Таким образом, торможение происходит в переходной стадии трения скольжения. Нужно выйти далеко за пределы элементарной физики, чтобы описать такое сложное взаимодействие различных видов трения. Да еще и присутствующее в этом процессе качение вносит свою лепту, непрерывно выводя из пятна контакта «отработавший» нагретый участок протектора и доставляя в него свежий — более холодный.

Трение неминуемо приводит к нагреву поверхности протектора, а изменение температуры существенно влияет на сцепные свойства резины. Перегрев протектора приводит к снижению его прочности и последующим микроразрушениям (плавлениям) поверхности, дополнительно ослабляя «держак». Характерный пример — торможение на автомобилях без АБС с полной блокировкой колес, с дымком и характерным запахом, оставляющее на асфальте черные следы горелой резины.

Шире шины — выше трение

Что мы имеем на практике? Чем шире протектор шины, тем больше площадь ее пятна контакта с дорогой, а значит, и поверхность трения больше. Следовательно, большее количество кинетической энергии будет преобразовываться в тепловую. К тому же интенсивнее станет рассеивание тепловой энергии и снизится опасность перегрева. Всё это в совокупности обеспечивает более эффективное торможение.

Переохлаждение шины тоже негативно сказывается на ее сцепных свойствах. Это особенно хорошо видно по ухудшению результатов «холодного» торможения на мокром асфальте при +6 °C. Резина не имеет возможности прогреться до рабочей температуры, а потому остается недостаточно эластичной и хуже цепляется за микронеровности асфальта. В этой ситуации способность широких шин лучше охлаждаться, наоборот, неблагоприятно отражается на рабочих характеристиках — в холодную погоду их сцепные свойства ухудшаются заметнее, чем у узких.

Еще раз о коэффициенте трения

Очень часто коэффициент трения воспринимают как некую константу, определяющую эффективность торможения. На практике эту величину определяют экспериментальным путем. Ее физический смысл — соотношение между силой трения и силой нормальной реакции (это сила, прижимающая колесо к дороге). Сила трения зависит от характеристик трущихся поверхностей. С одной стороны, это состояние и качество асфальта, с другой — состав и особенности резиновой смеси шины, площадь пятна контакта и распределение сил давления в ней. К тому же на силу трения оказывает влияние температура покрытия и воздуха, влажность и множество других факторов.

Примечательно, что сцепные свойства любых шин изменяются в ходе торможения. В начальный период они слегка улучшаются по мере прогрева резины до наиболее эффективной (рабочей) температуры, а затем — в случае, если резиновая смесь не успевает отдавать тепло и перегревается, — могут ухудшиться.

Как вычислить коэффициент трения? По формуле k = v²/2gs (где v — скорость начала торможения, g — ускорение свободного падения, s — тормозной путь). Значение тормозного пути для каждой шины получаем экспериментальным путем — замеряем при торможении на асфальте. Разные шины обеспечивают разный тормозной путь — следовательно, по своим сцепным свойствам они отличаются друг от друга. Причем чем шире протектор, тем сцепные свойства лучше (конечно, если резиновая смесь не переохлаждена). Результаты наших шинных испытаний доказывают это. И, как вы уже поняли, не противоречат законам физики.

Adblock
detector