ОСОБЕННОСТИ СХЕМ ОБМОТОК ЯКОРЕЙ МАШИН ПОСТОЯННОГО ТОКА
Обмотки якоря подразделяют по направлению отгиба лобовых частей на волновые и петлевые и в зависимости от схем соединений на простые и сложные. Соотношения размеров и схемы обмоток характеризуются двумя частичными и результирующими шагами, шагом по коллектору и шагом по пазам якоря (рис. 3.49). Частичные шаги
| (первый — у1, второй — у2) и результирующий шаг у измеряются в так называемых элементарных пазах, не имеющих эквивалента в линейных размерах. Под элементарным понимают условный паз, в котором как бы расположено по одной секционной стороне обмотки в каждом слое. Отсюда число элементарных пазов Zэ, число секций во всей обмотке якоря S, число пластин коллектора К и число пазов якоря Z связаны следующим соотношением: Zэ = S = К = Z uп, |
где uп — число секций в катушке якоря.
Шаг обмотки по коллектору ук определяет расстояние между началом и концом секции по окружности коллектора в коллекторных делениях tк = (πDк)/ K, где Dк — наружный диаметр коллектора.
Шаг обмотки по пазам (yz) определяет расстояние между сторонами катушки или секции в зубцовых делениях якоря tz = (πDa)/ Z, где Da — наружный диаметр якоря [6].
Схемы обмоток якорей машин постоянного тока изображают на чертежах так же, как и машин переменного тока, т. е. в виде торцевых (вид со стороны коллектора) или развернутых схем. Наибольшее распространение получили развернутые схемы. Их изображение имеет ряд особенностей, связанных с тем, что каждая катушка обмотки якоря состоит из нескольких секций и имеет столько пар выводных концов, сколько секций содержится в ней. Выводные концы секций соединены с пластинами коллектора. Поэтому на схеме обмотки якоря нужно либо каждую секцию изображать отдельным многоугольником, либо показывать пазовые части катушки одной линией, а лобовые части каждой секции — отрезками, соединенными с концами пазовой части и с пластинами коллектора. Последний способ изображения встречается чаще.
Рис. 3.50. Схема простой петлевой обмотки якоря, Z = 14, uп = 3, К = 42
На рис. 3.50 приведена развернутая схема простой петлевой обмотки, каждая катушка которой состоит из трех секций. Пазовые части катушек изображены в зависимости от их положения в пазу сплошными или пунктирными линиями, а в лобовых частях эти линии разветвляются: от каждой отходят три отрезка, обозначающих лобовые части трех секций, входящих в катушку. Начала и концы секций соединяют с пластинами коллектора. На схемах на коллекторных пластинах обычно показывают места расположения щеток.
Схемы обмоток якорей, как правило, состоят из ряда повторяющихся одинаковых элементов, поэтому полное представление об обмотке могут дать и сокращенные, так называемые практические схемы. В практических схемах вычерчивают секции только одной из катушек: показывают расположение обеих сторон секции в элементарных и действительных пазах и их соединение с пластинами коллектора. Пластины нумеруют так, чтобы их номера совпадали с номерами элементарных пазов, в которых располагают стороны секций, соединенных с данными пластинами. На рис. 3.51 показана практическая схема обмотки, развернутая схема которой приведена на рис. 3.50.
В большинстве обмоток первый частичный шаг секции у1 выбирают кратным числу секций в слое паза uп. В этом случае шаги по пазам катушек и всех секций обмотки одинаковые (yz = y1 /uп) и обмотку называют равносекционной (рис. 3.52, а). Если же у1 /uп не равно целому числу, то у секций будут разные шаги по пазам якоря
| (рис. 3.52, б). Такую обмотку нельзя выполнить из целых катушек. Она называется ступенчатой, выполняется только в стержневых обмотках и редко встречается в практике. Для того чтобы легче понять особенности различных схем обмоток якоря, все последующие схемы в учебнике построены для обмоток с uп = 1, при этом Z = Zэ = К. Следует отметить, что обмотку якоря с uп = 1 выполняют крайне редко, так как в этом случае необоснованно увеличивается число пазов и ухудшается их заполнение проводниками, потому что толщина корпусной изоляции катушки, состоящей из одной или из нескольких секций, остается одинаковой. |
Рис. 3.52. Равносекционная и ступенчатая обмотки:
uп=2, у1/ уп — не равно целому числу (обмотка ступенчатая)
ПРОСТЫЕ ПЕТЛЕВЫЕ ОБМОТКИ
В простых петлевых обмотках якоря (см. рис. 3.50) результирующий шаг равен шагу по коллектору:
Большее распространение получили обмотки с у = 1, так как при у = – 1 лобовые части секций несколько удлиняются и в них возникает дополнительное перекрещивание выводных концов (см. рис. 3.49, б). Первый частичный шаг петлевой обмотки выбирают близким к полюсному делению:
где e — наименьшее число (или дробь), при котором у1 выражен целым числом, кратным числу uп. Значение е характеризует укорочение (удлинение) шага по сравнению с полюсным делением. Обмотки с укороченным шагом применяются чаще.
Рассмотрим более подробно особенности простых петлевых обмоток на примере схемы, приведенной на рис. 3.50.
На практической схеме этой обмотки (см. рис. 3.51) показано что y1 = Zэ / 2p ±е = 42/ 4 – 1,5 = 9; у2 = y1 – у = 9 – 1 = 8. Шаги по пазам всех секций одинаковы: yz = у1 / uп = 9/3 =3. Обмотка равносекционная. Если же выполнить первый частичный шаг у1 = 42/4 – 0,5 = 10 (у2 = 10 – 1 = 9), то у1/uп = 10/3 становится не равным целому числу. Шаги секций по пазам будут разные (рис. 3.52) и обмотка получится ступенчатой.
При простой петлевой обмотке щетки на коллекторе должны быть расположены обязательно через каждое полюсное деление. Замыкая пластины коллектора, они образуют в обмотке 2р параллельных ветвей (рис. 3.53). Поэтому в простой петлевой обмотке число параллельных ветвей всегда равно числу полюсов машины: 2а = 2р.
Параллельные ветви в петлевой обмотке содержат несколько последовательно соединенных между собой секций, в каждой из которых во время работы машины наводится ЭДС. При сборке машины из-за допусков при штамповке и шихтовке сердечника неравномерности воздушного зазора под разными полюсами и ряда других причин всегда | |
существует некоторая асимметрия магнитной цепи. Поэтому ЭДС, наводимые в секциях в разных параллельных ветвях, немного отличаются друг от друга. Сопротивления параллельных ветвей практически всегда различаются между собой из-за различного качества паек мест соединений секций и пластин коллектора. По этим причинам токи в параллельных ветвях петлевой обмотки якоря никогда не бывают абсолютно одинаковые, так как в ветвях обмотки циркулируют уравнительные токи. Они замыкаются через скользящие контакты между щетками и поверхностью коллектора и перегружают их, при этом коммутация машин ухудшается, появляется искрение под щетками, пластины подгорают и коллектор быстрее выходит из строя.
Чтобы разгрузить щеточные контакты от уравнительных токов, в якорях с петлевой обмоткой устанавливают уравнительные соединения первого рода. Уравнительные сое-
Рис. 3.54. Расположение уравнительных соединений первого рода:
а, б — со стороны, противоположной коллектору; в — со стороны коллектора; 1 — сердечник якоря; 2 — лобовые части обмотки; 3 — уравнительные соединения; 4 — задний нажимной конус коллектора; 5 — коллектор
динения — это изолированные проводники, которые соединяют точки обмотки, имеющие теоретически одинаковые потенциалы. Уравнительные соединения не уменьшают уравнительные токи, а лишь направляют их по безвредному для работы машины пути, обеспечивая нормальную работу щеточного контакта без перегрузки, создаваемой уравнительными токами.
В простой петлевой обмотке одинаковые потенциалы должны быть у всех секций, расположенных на расстоянии двойного полюсного деления друг от друга. Поэтому шаг уравнительных соединений уур = К/р. Наиболее удобные места для подсоединения уравнителей к секциям — это коллекторные пластины или головки лобовых частей секций со стороны, противоположной коллектору (рис. 3.54).
На схеме рис. 3.50 условно показаны только два уравнительных соединения, выполненных с шагом, равным уур = К/р = 42/2 = 21 элементарных пазов.
Уравнительные соединения первого рода выполняют проводниками с площадью поперечного сечения, равной 20. 30 % сечения эффективного проводника обмотки. В машинах общего назначения чаще всего устанавливают по два-три уравнительных соединения на каждую пару параллельных ветвей или по одному уравнительному соединению на паз якоря, т. е. в 3 — 4 раза меньше, чем секций в обмотке.
При установке уравнительных соединений (рис. 3.54) усложняется технологический процесс изготовления якоря и увеличивается расход меди, поэтому петлевые обмотки применяют лишь в машинах, в которых не могут быть выполнены простые волновые обмотки [6].
ПРОСТЫЕ ВОЛНОВЫЕ ОБМОТКИ
Схема простой волновой обмотки якоря приведена на рис. 3.55. Обозначения шагов обмотки показаны на рис. 3.56. Шаг простой волновой обмотки по коллектору равен результирующему шагу:
В этой формуле знак «—» предпочтительный, так как при знаке «+» в обмотке появляются дополнительные перекрещивания выводных концов секций. Для первого частичного шага у1 = K/ 2p ± e сохраняется следующее условие: у1/ uп равно целому числу, иначе обмотка будет ступенчатой. Второй частичный шаг у2 = у – у1
Секции волновой обмотки соединяют друг с другом последовательно с результирующим шагом, близким к двойному полюсному делению. Поэтому при установке щеток на коллектор обмотка соединяется в две параллельные ветви независимо от числа полюсов
Рис. 3.55. Схема простой волновой обмотки якоря, Z = 17, K = 51, 2p = 4
Рис. 3.56. Элементы схемы и обозначение шагов простой волновой обмотки:
а – с двухвитковыми секциями, б – с одновитковыми секциями
| машины. В простых волновых обмотках всегда 2а = 1(рис. 3.57). Особенностью обмоток является также возможность работы машины при неполном числе щеточных болтов. Действительно, как видно из рисунка 3.57, уменьшение числа щеточных болтов не приводит к изменению направления токов в параллельных ветвях обмотки. |
Это обстоятельство используют, например, в ряде тяговых двигателей постоянного тока, в которых размещение полного числа щеточных болтов, равного 2р, затруднено из-за недостатка места [8].
При 2а = 2в обмотке отсутствуют эквипотенциальные точки и установка уравнительных соединений не требуется. Поэтому волновые обмотки более технологичны и дешевы по сравнению с петлевыми. Простые волновые обмотки применяют в большинстве машин, номинальный ток которых не превышает 500. 600 А, т. е. ток в каждой параллельной ветви волновой обмотки остается меньшим 250. 300 А.
Простые волновые обмотки могут быть выполнены симметричными только при условии, что ук = (К ± 1)/ рравно целому числу. Это накладывает определенные ограничения на соотношение чисел Ки р. В частности, машины общего назначения мощностью до 200. 300 кВт выпускают в большинстве случаев в четырехполюсном исполнении, т. е. с р = 2.Следовательно, для обеспечения симметрии обмотки коллектор якоря должен содержать нечетное число пластин. Но так как К = Z uп, то нечетными должны быть также число пазов якоря Z и число секций в катушке uп. В ряде случаев эти условия невыполнимы при заданных линейной нагрузке и уровнях магнитной индукции на участках магнитопровода. В таких якорях при (К ± 1)/ р, не равном целому числу, могут быть выполнены несимметричные волновые обмотки: обмотка с мертвой секцией или искусственно-замкнутая обмотка.
Обмотка с мертвой секцией применяется реже. Для ее выполнения коллектор машины берут с числом пластин, на одну меньшим, чем число секций в обмотке якоря, т. е. с нечетным числом пластин: К’ = Z uп — 1. Тогда ук = (К’ ± 1)/ рравно целому числу. По рассчитанному ук находят частичные шаги у1и у2и строят волновую обмотку. Число секций в обмотке s = Z uп, т. е. на одну больше, чем пластин коллектора. В пазы укладывают все секции, но одну из них не соединяют с коллектором. Образуется «мертвая секция». Выводные концы этой секции подрезают и изолируют; лобовые части закрепляют бандажом вместе со всей обмоткой.
Рис. 3.58. Схема волновой обмотки с мертвой секцией, Z = 18, uп = l, К = 17
На рис. 3.58 в качестве примера приведена схема простой волновой обмотки 2р = 4 с мертвой секцией, в которой для упрощения принято Z = 18, uп = 1. Для построения схемы взято К’ = 18 — 1 = 17; ук = (17 — 1)/2=8; у1 = 4. Мертвая секция, не соединенная с пластинами коллектора, выделена на схеме прерывистой жирной линией. Несимметрия схемы проявляется, например, в различных шагах у2 :шаги по пазам 5 – 9, 6 – 10, 7–11и т. д. не равны шагам 1 – 6, 2 – 7, 3 – 8и т. д.
Обмотки с мертвой секцией встречаются в машинах, коллекторы которых имеют большое (К >100) число коллекторных пластин, при этом возникающая несимметрия, практически незаметна.
Мертвую секцию можно было бы вообще не укладывать в пазы якоря, однако это нарушает последовательность укладки обмотки и требует заполнения оставшихся свободными частей пазов изоляционным материалом и дополнительных мер при балансировке якоря [6].