Меню

Схема запуска двигатель генератора

Проверка возможностей автомобильного генератора в качестве электродвигателя.

Решил провести эксперимент, по возможности использования генератора от легкового автомобиля, как тягового двигателя с прямым приводом на колесо, для велосипеда или что-либо подобного.
У меня как раз есть исправный генератор, но использовать его в автомобиль я не могу, как и некоторые другие вещи, но зато попробую провести этот эксперимент сам. В интернете на специализированных форумах есть размышления, что так не делают, что и в конструкции генератора специально особым образом подобраны формы ротора и статора, для работы его как генератора. Да и наличие отдельной катушки возбуждения усложняет конструкцию. Но из достоинств – генератор не создает практически никаких сопротивлений вращению, если на него не подан ток, и он есть за бесплатно. Заниматься самому математическим анализом реализации такой возможности, нет достаточного опыта и данных, пока (если кто разложит все по полочкам — буду признателен).
Схема подключения генератора:

Генератор был аккуратно разобран:

Из него был удален диодный мост и схема регулятора напряжения, подключены провода к обмоткам генератора, и щеточному узлу катушки возбуждения:

Затем все было собрано аккуратно и стало иметь такой вид:

Скрепка – торчащая из задней крышки генератора, фиксирует подпружиненные щетки в заглубленном состоянии, что позволяет правильно установить заднюю крышку, ничего не сломав. Затем скрепка вытягивается, и щетки упираются в коллектор.

Далее, из имеющегося блока электроусилителя руля, работающего на трехфазный мотор, изымаем блок силовых транзисторов. К сожалению, использовать его как полноценный блок управления трехфазным мотором (BLDC) нельзя.

Поэтому подключим блок силовых транзисторов к имеющейся плате 2CAN (описано ранее), через самодельную плату с драйверами управления транзисторами. А так как лето у нас короткое, то плата сделана самым простым и быстрым проверенным способом лазерной печати и утюга:

Общая схема получилась примерно такая:

Так как на плате 2CAN разведены не все выводы платы и микроконтроллера, пришлось добавить соединений навесным монтажом:

Написана простая программа управления трехфазным двигателем, используя таймер №1.Пока решил не использовать датчики положения ротора, ограничившись только регулировкой частоты вращения и заполнением ШИМ (амплитуду синусоид). Если генератор покажет оптимистичные характеристики, то тогда и усложню схему и программу. Форму напряжения выбрал синусоидальную, коэффициенты для таймера рассчитал простой программой на javascript, (позволяет писать программы в любом текстовом редакторе и запускать на выполнение любым браузером), файл sine.html (в zip) прилагаю ниже.

При открытии его браузером, можно просмотреть значения, и скопировать в буфер обмена:

Такая конструкция получилось в итоге:

Форма результирующего напряжения двух фаз такая (осциллограф двухлучевой к сожалению):

(после простого R-C фильтра для щупа осциллографа), а так без фильтра на прямую:

В качестве источника питания был выбран аккумулятор 12В 7А, через предохранитель 30 Ампер питание подавалось на схему. Обороты генератора, которые меня интересовали, были в пределах от 0 до 420 оборотов в минуту. Исходя из того, что если на шкив генератора надеть колесо диаметром 20 см, и при этом скорость максимальную ограничить в 16км/час. Подключим генератор:

Примитивным способом оценить крутящий момент, развиваемый генератором, решили с помощью поднятия груза, подвешенного за веревку к шкиву генератора.

Далее все расчеты довольно примитивны, и возможно есть ошибки. В качестве груза выбрал две 5-литровых емкости с водой. При диаметре шкива 5,5см, генератор с уверенно поднимал этот груз при 50 % заполнении ШИМ таймера на высоту 50 см за 3 секунды. Ток от аккумулятора составлял порядка 16 Ампер, но и напряжение на нем падало до 11 Вольт (слабоват аккумулятор). Получается, гарантирован крутящий момент примерно 2,75 ньютона на метр, при 3 оборотах в секунду. Сила тяги генератора с колесом диаметром 20см, одетого напрямую на вал, составила бы 12,5 ньютона (условная скорость составила бы примерно 7км/час). Для ребёнка, стоящего на роликах может быть и хватит. Для реализации полной мощности потребовался бы аккумулятор большей емкости, и более толстые провода. Без нагрузки, генератор вращается без подачи тока на катушку возбуждения (как несинхронный трехфазный электродвигатель). По идее, учитывая, что при потребляемой мощности в 176 ватт, получаем мощность на совершение работы, очень примерно оцененной в 16 Ватт, КПД полученного устройства не радует. Даже если удастся увеличить КПД использованием датчиков положения ротора в два -три раза, тяга маловата все таки для взрослого человека. Значительная часть тока тратится на катушку возбуждения, при этом, в зависимости от нагрузки, оборотов и температуры генератора составляет это порядка 5 — 12 Ампер. Да и генератор в родном рабочем режиме крутится на горазбо более высоких оборотах (2100 — 18000 об/мин). Выходить на рабочие токи больше 30 Ампер в схеме посчитал нецелесообразным. Конечно, используя мотор с постоянными магнитами, можно значительно поднять КПД устройства. Но все равно, значительные токи в узлах схемы, при напряжении питания в 12 Вольт, не позволяют добиться приемлемых параметров при длительной работе мотора в тяговом режиме. А перематывать катушки статора генератора под другое напряжение, количество оборотов, делать ротор с неодимовыми магнитами — это уже надо быть сильно мотивированным на это. Практичнее переходить на готовые, относительно легко доступные BLDC моторы для велосипедов, скутеров и т.д. с напряжением 36 Вольт и более. Также был подключен оригинальный двигатель, и это совсем другая тема и возможности:

Читайте также:  Автосервис центр диагностики автомобилей

В автомобильных вентиляторах охлаждения, часто применяются двухфазные электродвигатели с постоянными магнитами, выдавая мощность под 300ватт (но коррозия и большие токи зачастую выводят из строя компактную схему управления, встроенную в мотор).

Других целей больше не было, остался удовлетворенным полученным отрицательным результатом 🙂

Приведу настройки таймера:

А табличные значения получаем как написано выше (редактируем имя распечатываемого на экран массива ) 🙂 Плохо что видео нельзя тут приложить, довольно забавно. Если есть вопросы – без проблем задавайте, пишите 🙂

С уважением, Астанин Сергей, ICQ 164487932.

Добавил сам проект, правда внутри много лишнего осталось от проекта общения по CAN, но мотору не мешает.

Асинхронный электродвигатель в качестве генератора

В статье рассказано о том, как построить трёхфазный (однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока. Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту.

Асинхронные электродвигатели – самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части — статора и подвижной части — ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название — короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом.

Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора.

Читайте также:  Регулировка машин для поверхностной обработки почвы

Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели, которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы — трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность.

Работа асинхронного электродвигателя в генераторном режиме

Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим.

Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Q = 0,314·U 2 ·C·10 -6 ,

где С — ёмкость конденсаторов, мкФ.

Мощность генератора,кВ·А Холостой ход Полная нагрузка
ёмкость, мкФ реактивная мощность, квар cos = 1 cos = 0,8
ёмкость, мкФ реактивная мощность, квар ёмкость, мкФ реактивная мощность, квар
2,0
3,5
5,0
7,0
10,0
15,0
28
45
60
74
92
120
1,27
2,04
2,72
3,36
4,18
5,44
36
56
75
98
130
172
1,63
2,54
3,40
4,44
5,90
7,80
60
100
138
182
245
342
2,72
4,53
6,25
8,25
11,1
15,5

Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости. Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы. Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора.

Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте. Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом.

Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя.

В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя-генератора определяется мощностью подключаемых устройств. Наиболее энергоёмкими из них являются:

  • бытовые сварочные трансформаторы;
  • электропилы, электрофуганки, зернодробилки (мощность 0,3…3 кВт);
  • электропечи типа «Россиянка», «Мечта» мощностью до 2 кВт;
  • электроутюги (мощность 850…1000 Вт).

Особо хочу остановиться на эксплуатации бытовых сварочных трансформаторов. Их подключение к автономному источнику электроэнергии наиболее желательно, т.к. при работе от промышленной сети они создают целый ряд неудобств для других потребителей электроэнергии.

Если бытовой сварочный трансформатор рассчитан на работу с электродами диаметром 2…3 мм, то его полная мощность составляет примерно 4…6 кВт, мощность асинхронного генератора для его питания должна быть в пределах 5…7 кВт. Если бытовой сварочный трансформатор допускает работу с электродами диаметром 4 мм, то в самом тяжелом режиме — «резки» металла, потребляемая им полная мощность может достигать 10…12 кВт, соответственно мощность асинхронного генератора должна находиться в пределах 11…13 кВт.

Читайте также:  Двигатель кашкай замена колпачков

В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соsφ в промышленных осветительных сетях. Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом. КМ — косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории).

В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя.

Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.

Двухфазный режим асинхронного генератора.

Рис.2 Двухфазный режим асинхронного генератора.

Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит «драгоценное» топливо.

В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа «Ока», «Волга», поливальных насосов «Агидель», «БЦН» и пр. У них конденсаторная батарея может подключаться параллельно рабочей обмотке, либо использовать уже имеющийся фазосдвигающий конденсатор, подключенный к пусковой обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить. Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) — больше.

Рис.3 Маломощный генератор из однофазного асинхронного двигателя.

Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%. Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя. При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя.

Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других — коммутируют цепь возбуждения. Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы – ротор невозбужденного генератора еще некоторое время вращают от механического двигателя. Эта процедура продлевает активный срок службы обмоток генератора.

Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: «фазу» и «ноль».

В заключение несколько общих советов.

1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

3. Обратите внимание на тепловой режим генератора. Он «не любит» холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы — 2/3 общей мощности генератора.

5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме «холостого хода» должно на 4…6 % превышать промышленное значение 220/380 В.

Adblock
detector