Управление Ардуино шаговым двигателем от принтера
В этом уроке вы узнаете, как управлять с помощью Ардуино шаговым двигателем, который был взят от старого принтера.
Шаг 1. Что такое шаговый двигатель?
Шаговый двигатель состоит из двух основных частей: ротора и статора.
Ротор является частью двигателя, который фактически вращается и обеспечивает работу. Статор представляет собой неподвижную часть двигателя, в котором размещается ротор. В шаговом двигателе ротор представляет собой постоянный магнит. Статор состоит из нескольких катушек, которые действуют как электромагниты, когда через них проходит электрический ток. Электромагнитная катушка заставит ротор выровняться вместе с ним при зарядке. Ротор приводится в движение путем чередования тока на катушках, протекающий через них.
Шаговые двигатели имеют ряд преимуществ. Они дешевы и просты в использовании. Когда ток не поступает в двигатель, ничего не происходит. Шаговые двигатели также могут вращаться без ограничений и изменять направление в зависимости от установленной полярности.
Шаг 2: Список деталей
Необходимые детали для проекта Ардуино шагового двигателя:
- Шаговый двигатель (этот двигатель был взят от старого принтера)
- Arduino
- Изолированный медный провод
- Проволочные резаки / стрипперы
- Регулятор тока
- транзистор
- драйвер двигателя H-Bridge 1A
- моторный шилд
- паяльник
- припой
- инструменты
- безопасные очки
Шаг 3: Присоединяем провода
Большинство шаговых двигателей имеют четыре провода, поэтому вам нужно будет обрезать четыре медных провода (обратите внимание, что цвет не коррелирует с чем-либо конкретным (обычно есть правило, что черный — это земля, но не сейчас). Различные цвета были использованы только для облегчения понимания. Эти выводы будут использоваться для управления, какая катушка в настоящее время активна в двигателе. Для этого проекта Ардуино шаговый двигатель был взят от старого принтера, поэтому пайка проводов была самым простым вариантом для этого проекта. В любом случае, вы можете безопасно установить соединение (пайка, штекер, клипы).
Шаг 4: Эскиз/скетч Arduino
Arduino уже имеет встроенную библиотеку для шаговых двигателей. Просто перейдите в меню:
Файл → Примеры → Шаговые → stepper_oneRevolution
File → Examples → Stepper → stepper_oneRevolution
Затем вам нужно изменить переменную stepsPerRevolution, чтобы она соответствовала вашему конкретному двигателю. После просмотра номера деталей двигателей в Интернете наш конкретный двигатель был рассчитан на 48 шагов для завершения одного оборота.
То, что на самом деле делает библиотека Stepper — чередует сигналы HIGH и LOW для каждой катушки, как показано в анимации выше.
Шаг 5: Что такое мост H-bridge?
H-Bridge — схема, состоящая из 4 переключателей, которые могут безопасно управлять двигателем постоянного тока или шаговым двигателем. Эти переключатели могут быть реле или (чаще всего) транзисторами. Транзистор представляет собой твердотельный переключатель, который можно закрыть, посылая небольшой ток (сигнал) на один из его контактов.
В отличие от одного транзистора, который позволяет вам контролировать скорость двигателя, H-мосты позволяют вам также контролировать направление вращения двигателя. Он делает это, открывая различные переключатели (транзисторы), чтобы ток тек в разных направлениях и, таким образом, изменяя полярность на двигателе.
H-Bridges может помочь вам предотвратить перегорания вашего Arduino моторами, которыми вы пользуетесь. Двигатели являются индукторами, а это означает, что они хранят электрическую энергию в магнитных полях. Когда ток больше не посылается двигателям, магнитная энергия возвращается в электрическую энергию и может повредить компоненты. H-Bridge помогает изолировать ваш Arduino лучше всего. Вы не должны подключать двигатель непосредственно к Arduino.
Хотя H-Bridges можно легко сделать самому многие предпочитают покупать H-Bridge (например, чип L293NE / SN754410) из-за удобства. Это чип, который мы будем использовать в этом уроке. Физические номера контактов и их назначение ниже:
- Пин 1 (1, 2EN) → Мотор 1 Включен/Выключен (HIGH/LOW)
- Пин 2 (1A) → Мотор 1 логический выход 1
- Пин 3 (1Y) → Мотор 1 терминал 1
- Пин 4 → Земля
- Пин 5 → Земля
- Пин 6 (2Y) → Мотор 1 терминал 2
- Пин 7 (2A) → Мотор 1 логический выход 2
- Пин 8 (VCC2) → Питание для двигателей
- Пин 9 → Мотор 2 Включен/Выключен (HIGH/LOW)
- Пин 10 → Мотор 2 логический выход 1
- Пин 11 → Мотор 2 терминал 1
- Пин 12 → Земля
- Пин 13 → Земля
- Пин 14 → Мотор 2 терминал 2
- Пин 15 → Мотор 2 логический выход 2
- Пин 16 (VCC1) → Питание для H Bridge (5В)
Шаг 6: Схема соединения
Схема соединения нашего проекта Ардуино шагового двигателя ниже.
Для шагового двигателя Ардуино 4 вывода на H-Bridge должны подключаться к 4 выводам двигателя. Затем 4 логических вывода подключаются к Arduino (8, 9, 10 и 11). Как показано на диаграмме выше, для питания двигателей можно подключить внешний источник питания. Чип может обрабатывать внешний источник питания от 4,5 до 36 В (мы выбрали батарею 9В).
Шаг 7: Загрузка кода и тестирование
Загрузите свой код в Ардуино. Если вы запустите свой код и все сработает так, как ожидалось, это потрясающе! Если провода вставлены в неправильные контакты, двигатель просто вибрирует, а не полностью вращается. Играйте со скоростью и направлением двигателя, как сочтете нужным.
На этом всё, теперь у вас должен быть рабочий шаговый двигатель Arduino. То, что вы сделаете дальше, зависит только от вас.
МК-управление микрошаговым драйвером LB1847 из старого принтера
Данная статья родилась в помыслах изготовить себе трёх-координатный микростанок с ЧПУ для выполнения некоторых минимальных задач по сверлению, фрезерованию и вырезке печатных плат.
В течение некоторого времени мне очень часто на запчасти отдают старые матричные и струйные принтеры по причинам того, что хозяева решили купить себе новый и более совершенный принтер или МФУ, ибо старенький свой принтер уже морально устарел или его ремонт будет стоить соизмеримо с приобретением нового принтера, а старый попросту выкинули.
После разборки и выброса ненужных пластмассовых деталей и внутренней механики, я себе оставлял только печатные платы, шаговые двигатели с пасиками и стальные направляющие, по которым когда-то бегала печатающая головка. Давным-давно я посматривал в них на интересную микросхему, которая питает тамошние шаговые двигатели.
Просто запросив в поиске даташит на данную микросхему, я увидел в ней не просто драйвер с четырьмя парами ключей, а полноценный микрошаговый ШИМ контроллер.
Итак, микросхема LB1847 (даташит PDF) — это драйвер для шаговых двигателей с широтно-импульсным управлением током обмоток биполярного двигателя.
Особенностью данной микросхемы является возможность установки тока на обмотки двигателя в 15 шагов в любой полуфазе.
С возможностью установки медленного затухания тока, быстрого спада тока или смешанного режима, тем самым повышая частотные характеристики, которыми можно добиться высокоточного управления и получить наименьшие вибрации двигателя.
Не буду заниматься комментированием оригинального даташита, вы просто можете запросить его в поиске, найти во вложении к статье и самостоятельно изучить характеристики. Я же двинусь далее.
Схема подключения довольно простая.
В считанные минуты была нарисована печатка и при помощи ЛУТа сделана плата, обвязку из резисторов, конденсаторов и диодов Шоттки, тоже снял со старой платы:
Далее это все было подключено к одной из моих самодельных тестовых плат с микроконтроллером Atmega32. Конечно, можно использовать любую доступную вам, но нужно учитывать, что должно хватать выводов для подключения, так как на управление используется аж 12 линий.
В моём случае изначально тестировался максимально возможный режим работы драйвера в режиме Phase 4W1-2, но потом посчитал что это уже чересчур и настолько уже сверх-точность мне не нужна, потому и перевел на режим Phase 2W1-2, тем самым просмотрев данную таблицу выявил закономерность по первым входам каждого плеча драйвера — на них постоянно присутствует логическая «1» в нужном для меня режиме.
Ну и пусть, просто подключим их на питание микросхемы и забудем про них.
Так мы сократили количество используемых выводов до 10. При дальнейшем исследовании этой таблицы явно заметно, что вывод ENABLE получая логическую «1» (просто обесточивает канал, давая возможность другому каналу притянуть к себе магнитный ротор на максимальном токе), и при этом не имеет значения в какой фазе этот канал находится.
Сразу заметно, что та самая единица появляется тогда как на входах 2-3-4 каждого канала присутствует логический «0». Тут просто вспомним о справочнике микросхем логики и найдем нужный для нас логический элемент. Нам понадобится два элемента 3ИЛИ-НЕ, выбираем микросхему, импортная 7427, отечественная К155ЛЕ4 или подобные.
Обвязку полного подключения LB1847 не изображал, так как она ничем не отличается от той, что в даташите. На Vref временно поставил проволочный подстроечный резистор.
Как видно, теперь мы используем только 8 выводов для управления, чего вполне достаточно для использования одного полного порта микроконтроллера.
Теперь приступим к программированию нашего микроконтроллера. Для этого нам потребуется предварительно рассчитать значение выхода целого порта микроконтроллера для каждого микрошага.
Тут я просто использовал программу Excell, где создал таблицу и встроенными формулами рассчитал значение PORTB для режима Phase 2 W1-2 (учтите, что пример в даташите указан только для одной фазы, необходимо продублировать его для второй с изменением направления тока через обмотки ).
Сразу забегу вперед. Я изначально вдоволь наигрался как заданием статических величин по значениям перемещения вала, так и с вводом значения перемещения через порт RS232, но потом всё же захотелось вручную лицезреть сие детище и подключил энкодер, дабы насладиться механическим управлением с визуальным вращением вала шагового двигателя.
Функция опроса энкодера
Функция опроса энкодера не имеет никаких особенностей, банально читает значения с выводов и по их изменению добавляет или отнимает значение счетчика, тем самым диктуя главной программе направление на вращения. Единственное что опрос у меня сейчас проходит на частоте 100кГц, и мне было лень добавлять отдельный счетчик (три строчки программы), чтобы отсчитывать только полные щелчки оборота энкодера, да это и совсем не нужно на данной стадии тестовых испытаний.
Обработчик прерывания таймера
Аналогичная функция на обработку обратного счета для движения оси шагового двигателя в обратную сторону.
В данную функцию я ввел очень полезную величину, можно задать шаг работы двигателя от 1 до 8. Это я и хочу использовать в дальнейшем, чтобы можно было программно управлять скоростью перемещения.
Например: для холостого перемещения на пару тысяч шагов можно составить простой алгоритм, который может п лавно н ачать с одного микрошага за такт разрешения таймера, и каж дые 10 тактов поднимать на единицу пока не достигнет «8», так будет программно реализован четверть шаг (счетчик тоже будет добавлять или отнимать по 8 шагов), а далее за 100 шагов до окончания пути начать уменьшать значение перешагивания каждые 10 тактов и двигатель плавно остановится на нужном ему значении. Такая реализация программно обеспечит высокую скорость перемещения при максимальной точности перемещения вала двигателя даже под нагрузкой (старт-разгон-работа-торможение-остановка). Можно, конечно, поднять значение и до 16, в таком случае двигатель выйдет на режим полушага.
Главный цикл программы
Для проверок использовался один из биполярных шаговых двигателей с тех самых разобранных принтеров.
Он имеет шаг 7,5 градусов, что соответствует 48 шагам на полный оборот, при 32 микрошагах это выходит точность 1536 микрошагов на полный оборот вала двигателя. Если бы нам не было жалко использовать еще 2 вывода микроконтроллера, то легко можно получить 1/64 шага. А присмотревшись в конструктив этой микросхемы, думаю несложно и поболее 128 шагов сделать, только придется много расчетов произвести на усредненные значения, правда будет серьёзная нелинейность вращения, но и то что мы получили вполне достаточно, незачем нам вращение менее 0,1 градуса.
Энкодер, что я нашел у себя, имеет 24 щелчка на полный оборот, в каждом щелчке 4 импульса изменения состояния, то есть 96 импульсов на полный оборот.
Без использования энкодера программно запускал его на довольно быстрое вращение и действительно чувствовалась сила на валу при том, что я его питаю 12V вместо 24V родного питания принтера.
Вот посмотрите что из этого вышло.
При необходимости можно сохранять в энерго-независимой памяти текущие значения шага, и использовать его при отключениях устройства, только заранее привести значение к нулевому, ибо после отключения-включения устройства полушаг может провернуть вал как в одну, так и в другую сторону. Или просто использовать калибровку (например, на оптопаре или концевике) при включении устройства.
Данная статья была предварительным тестом работы микросхемы LB1847, все собрано практически на коленке, только для уточнения всех нюансов её работы. Далее планируется использовать более продвинутый микроконтроллер (скорее всего STM32) и организация одновременного управления тремя (и более) двигателями.
При необходимости можно еще дополнительно вывести на МК выводы DECAY, MD и программно управлять режимом спада тока при различных условиях.