Меню

Схема подключения частотного преобразователя с асинхронным двигателем

Асинхронный электродвигатель: как подключить к преобразователю частоты?

Главная страница » Асинхронный электродвигатель: как подключить к преобразователю частоты?

Времена эксплуатации асинхронных электродвигателей по схеме включения через традиционный магнитный пускатель, похоже, уходят в прошлое. Появление устройств – частотных преобразователей, несколько изменило стандартную схему включения на асинхронный электродвигатель. Теперь нет надобности: периодически менять катушку индуктивности магнитного пускателя, однако есть надобность настройки частотного преобразователя под параметры электромотора.

Режимное подключение асинхронных электродвигателей

Рассмотрим, как подключить асинхронный электродвигатель к преобразователю частоты вместо магнитного пускателя. Какие нужны манипуляции для такой «инновационной» работы электрика?

Определяясь относительно выполнения схемы питания, электрик, как правило, выбирает из двух вариантов:

  1. Подключение по питанию 220 вольт.
  2. Подключение по питанию 380 вольт.

Кроме отмеченных вариантов существуют, конечно, схемы питания асинхронных электродвигателей другими параметрами питающих напряжений, но в базовой (хозяйственно-бытовой) стратегии обычно параметр выше 380 вольт не используется.

Отмеченная стратегия выбора по напряжению естественным образом сопровождается некоторой особенностью подключения асинхронных электродвигателей к частотному преобразователю, в зависимости от организации питания: в режиме 220 вольт (однофазное) или 380 вольт (трёхфазное).

Устройства, сочетающие в схеме электрику и электронику, позволяют питать асинхронные электродвигатели разным напряжением. Удобная техника для подключения моторов

На примере широко распространённого прибора VLT 51 серии «Micro Drive» — продукта производства компании «Danfoss», особенность соединения асинхронного электродвигателя и частотного преобразователя проста.

Если выбирается напряжение 220 вольт, используются две клеммы трёхфазного сетевого терминала, отмеченные символами «L1L» и «L3N», соответственно. В другом случае (схема 380 вольт) используются все три клеммы того же терминала.

Соединение с клеммами терминалов ПЧ

Следует отметить важный момент: опираясь на значение мощности подключаемого к частотному преобразователю асинхронного электродвигателя, на БРНО мотора применяется схема «звезда» либо «треугольник». Конечно же, модель частотного преобразователя необходимо подбирать как соответствующую мощности мотора.

Традиционно электродвигатели относительно небольших мощностей включают «звездой», тогда как под мощные асинхронные электродвигатели выполняется конфигурация «треугольником». Асинхронный электродвигатель соединяется с терминалом частотного преобразователя через клеммы, обозначенные символами: «U», «V», «W».

Терминалы частотного преобразователя для подключения асинхронного электродвигателя: 1 – однофазная сеть 220В (L1L / L3N); 2 – проводники от БРНО мотора на клеммах «U», «V», «W», соответственно; 3 – линия дистанционного управления в режиме «Авто»; 4 – заземляющие проводники на клемму «Земля» прибора

Головки затяжных винтов терминалов, как правило, имеют пазы под плоское лезвие отвёртки. В зависимости от назначения терминала могут потребоваться отвёртки разного размера лезвия. На контакты (3) устанавливается простая кнопка с фиксацией в качестве пульта дистанционного включения/отключения.

Как настроить прибор на параметры асинхронного электродвигателя?

Итак, после выполнения и проверки корректности всех соединений, частотный преобразователь VLT потребуется настроить, исходя из параметров подключенного мотора. Предварительно следует снять эксплуатационные данные с технической таблички на корпусе асинхронного электродвигателя. В частности, необходимы параметры:

  • мощности,
  • рабочего напряжения,
  • частоты,
  • силы тока,
  • числа оборотов.

Этих параметров вполне достаточно, чтобы запустить асинхронный электродвигатель в работу через ПЧ.

Ввод рабочих значений в память ПЧ

Снятые параметры заводятся в память прибора посредством некоторых манипуляций на клавиатуре панели управления. Для большинства случаев подключения достаточно функции быстрого меню «Quick Menu». Эта функция активируется однократным нажатием клавиши «Меню» панели управления, с последующим подтверждением путём нажима клавиши «ОК».

Большинство асинхронных классических электродвигателей настраиваются на работу с ПЧ через функцию быстрого меню. Операции: один нажим «Меню», затем «ОК», после чего система открывает перечень настроек

Открытый режим «Быстрого меню» стартует параметром « 1-20 », где конфигурируется уровень мощности мотора. Для справки: ПЧ серии «VLT» поддерживают диапазон мощностей 0,09 – 11 кВт. Однако, исходя из мощности ПЧ, доступна лишь определённая часть диапазона мощностей в меню выборки значений.

Читайте также:  Сравнение тест драйв опель астра

Нужный параметр мощности (взятый с таблички мотора) пользователь может набрать при помощи клавиш панели управления («стрелки вверх / вниз»). Но предварительно ввод требуемого параметра нужно активировать кнопкой «ОК» (строка на дисплее начинает пульсировать). Нужная мощность выбирается из списка доступных значений. Выбранное значение опять же фиксируется клавишей «ОК».

Таким же способом настраиваются другие пункты быстрого меню: 1-22 (напряжение), 1-23 (частота), 1-24 (ток), 1-25 (число оборотов). Для перехода по пунктам меню применяется клавиша «стрелка вверх» (или «стрелка вниз», если требуется обратное движение).

Адаптация (проверка) правильности ввода значений

Как только выполнен ввод пяти основных рабочих параметров асинхронного электродвигателя, на следующем этапе следует провести адаптацию мотора. Для проведения адаптации используется очередной пункт быстрого меню 1-29 (ADD). Функция адаптации активируется установкой значения «2».

После подтверждения кнопкой «ОК», ПЧ переходит в режим автоматического тестирования. На дисплей выводится сообщение о необходимости активации кнопки ручного пуска.

Кнопки на панели управления (в нижней части) включения / отключения / сброса ПЧ, поддерживающие ручной (Hand On) и автоматический (Auto On) режим пуска, а также отключение / сброс (Off Reset). Слева (вверху) – шкала контроля работы. Справа (вверху) – потенциометр настройки частоты

Активация кнопки ручного пуска приводит к запуску функции ADD (адаптация асинхронного электродвигателя), что визуально отображается на дисплее в виде символа «рисуемого» системой прямоугольника в левом нижнем углу экрана.

Спустя примерно полминуты, тест завершается и если всё в норме, на экране появляется требование активировать клавишу «ОК». Активацией этой кнопки процедура настройки адаптации завершается.

Другие часто востребованные настройки

Помимо основных настроек, рассмотренных выше, нередко становятся актуальными ещё несколько функций. В частности, к примеру, требуется перевести на ПЧ управление асинхронным электродвигателем из ручного режима пуска в автоматический режим пуска или обратно. Делается это применительно к модели «VLT» уже посредством обычного меню через секции 0-40, 0-41, 0-42.

Видеоролик настройки алгоритмов включения/отключения

Видеоролик ниже демонстрирует, как секция меню из трёх (0-40, 0-41, 0-42) установочных параметров может использоваться для настройки алгоритма запуска асинхронного электродвигателя с поддержкой нескольких (разных) режимов управления пуском и остановкой мотора:

Следует отметить, что установкой определённого параметра в секциях допустимо заблокировать функцию кнопки отключения/сброса (Off Reset) на устройстве.

То есть отключить асинхронный электродвигатель, питаемый напряжением через ПЧ, можно только сигналом внешнего управления. Аналогично можно настроить пусковой режим.

Видеоролик настройки ПЧ VLT быстрым меню

Видео показывает последовательность манипуляций пользователя кнопками панели управления в момент настройки оптимальной связи электромотора с преобразователем частоты. Рассматривается работа пользователя в режиме быстрого меню (Quick Menu):

Заключительный штрих на асинхронный электродвигатель

Появление описываемых электрических (электронных) приборов под управление асинхронных электродвигателей существенно упростило эксплуатацию широко распространённого электрооборудования.

Правда, частотные преобразователи пока что остаются достаточно дорогостоящими устройствами, тем более модели, поддерживающие высокие уровни мощности. Но время показывает быстрое развитие технологий, а потому снижение цен в будущем видится неизбежным явлением.

Частотный преобразователь — виды, принцип действия, схемы подключения

Ротор любого электродвигателя приводится в движение под действием сил, вызванных вращающимся электромагнитным полем внутри обмотки статора. Скорость его оборотов обычно определяется промышленной частотой электрической сети.

Ее стандартная величина в 50 герц подразумевает совершение пятидесяти периодов колебаний в течение одной секунды. За одну минуту их число возрастает в 60 раз и составляет 50х60=3000 оборотов. Такое же число раз проворачивается ротор под воздействием приложенного электромагнитного поля.

Читайте также:  Камеры для колес автомобиля r17

Если изменять величину частоты сети, приложенной к статору, то можно регулировать скорость вращения ротора и подключенного к нему привода. Этот принцип заложен в основу управления электродвигателями.

Виды частотных преобразователей

По конструкции частотные преобразователи бывают:

1. индукционного типа;

Асинхронные электродвигатели, выполненные по схеме с фазным ротором и запущенные в режим генератора, являются представителями первого вида. Они при работе обладают низким КПД и отмечаются маленькой эффективностью. Поэтому они не нашли широкого применения в производстве и используются крайне редко.

Способ электронного преобразования частоты позволяет плавно регулировать обороты как асинхронных, так и синхронных машин. При этом может быть реализован один из двух принципов управления:

1. по заранее заданной характеристике зависимости скорости вращения от частоты (V/f);

2. метод векторного управления.

Первый способ является наиболее простым и менее совершенным, а второй используется для точного регулирования скоростей вращения ответственного промышленного оборудования.

Особенности векторного управления частотным преобразованием

Отличием этого способа является взаимодействие, влияние устройства управления преобразователя на «пространственный вектор» магнитного потока, вращающийся с частотой поля ротора.

Алгоритмы для работы преобразователей по этому принципу создаются двумя способами:

1. бессенсорного управления;

Первый метод основан на назначении определенной зависимости чередования последовательностей широтно-импульсной модуляции (ШИМ) инвертора для заранее подготовленных алгоритмов. При этом амплитуда и частота напряжения на выходе преобразователя регулируются по скольжению и нагрузочному току, но без использования обратных связей по скорости вращения ротора.

Этим способом пользуются при управлении несколькими электродвигателями, подключенными параллельно к преобразователю частоты. Потокорегулирование подразумевает контроль рабочих токов внутри двигателя с разложением их на активную и реактивную составляющие и внесение корректив в работу преобразователя для выставления амплитуды, частоты и угла для векторов выходного напряжения.

Это позволяет повысить точность работы двигателя и увеличить границы его регулирования. Применение потокорегулирования расширяет возможности приводов, работающих на малых оборотах с большими динамическими нагрузками, такими как подъемные крановые устройства или намоточные промышленные станки.

Использование векторной технологии позволяет применять динамическую регулировку вращающихся моментов к трехфазным асинхронным двигателям.

Принципиальную упрощенную электрическую схему асинхронного двигателя можно представить следующим видом.

На обмотки статора, обладающие активным R1 и индуктивным X1 сопротивлениями, приложено напряжение u1. Оно, преодолевая сопротивление воздушного зазора Хв, трансформируется в обмотку ротора, вызывая в ней ток, который преодолевает ее сопротивление.

Векторная диаграмма схемы замещения

Ее построение помогает понять происходящие процессы внутри асинхронного двигателя.

Энергия тока статора разделяется на две части:

iµ — потокообразующую долю;

iw — моментообразующую составляющую.

При этом ротор обладает активным сопротивлением R2/s, зависящим от скольжения.

Для бессенсорного управления измеряются:

По их значениям рассчитывают:

iµ — потокообразующую составляющую тока;

iw — моментообразующую величину.

В алгоритм расчета уже заложили электронную эквивалентную схему асинхронного двигателя с регуляторами тока, в которой учтены условия насыщения электромагнитного поля и потерь магнитной энергии в стали.

Обе этих составляющих векторов тока, отличающиеся по углу и амплитуде, вращаются совместно с системой координат ротора и пересчитываются в стационарную систему ориентации по статору.

По этому принципу подстраиваются параметры частотного преобразователя под нагрузку асинхронного двигателя.

Принцип работы частотного преобразователя

В основу этого устройства, которое еще называют инвертором, заложено двойное изменение формы сигнала питающей электрической сети.

Вначале промышленное напряжение подается на силовой выпрямительный блок с мощными диодами, которые убирают синусоидальные гармоники, но оставляют пульсации сигнала. Для их ликвидации предусмотрена батарея конденсаторов с индуктивностью (LC-фильтр), обеспечивающая стабильную, сглаженную форму выпрямленному напряжению.

Читайте также:  Как правильно заправлять кондиционер автомобиля с заменой масла

Затем сигнал поступает на вход преобразователя частоты, который представляет собой мостовую трехфазную схему из шести силовых транзисторов серии IGBT или MOSFET с диодами защиты от пробоя напряжений обратной полярности. Используемые ранее для этих целей тиристоры не обладают достаточным быстродействием и работают с большими помехами.

Для включения режима «торможения» двигателя в схему может быть установлен управляемый транзистор с мощным резистором, рассеивающим энергию. Такой прием позволяет убирать генерируемое двигателем напряжение для защиты конденсаторов фильтра от перезарядки и выхода из строя.

Способ векторного управления частотой преобразователя позволяет создавать схемы, осуществляющие автоматическое регулирование сигнала системами САР. Для этого используется система управления:

2. ШИМ (широтного импульсного моделирования).

Метод амплитудного регулирования основан на изменении входного напряжения, а ШИМ — алгоритма переключений силовых транзисторов при неизменном напряжении входа.

При ШИМ регулировании создается период модуляции сигнала, когда обмотка статора подключается по строгой очередности к положительным и отрицательным выводам выпрямителя.

Поскольку частота такта генератора довольно высокая, то в обмотке электродвигателя, обладающего индуктивным сопротивлением, происходит их сглаживание до синусоиды нормального вида.

Способы ШИМ управления позволяют максимально исключить потери энергии и обеспечивают высокий КПД преобразования за счет одновременного управления частотой и амплитудой. Они стали доступны благодаря развитию технологий управления силовыми запираемыми тиристорами серии GTO или биполярных марок транзисторов IGBT, обладающих изолированным затвором.

Принципы их включения для управления трехфазным двигателем показаны на картинке.

Каждый из шести IGBT-транзисторов подключается по встречно-параллельной схеме к своему диоду обратного тока. При этом через силовую цепь каждого транзистора проходит активный ток асинхронного двигателя, а его реактивная составляющая направляется через диоды.

Для ликвидации влияния внешних электрических помех на работу инвертора и двигателя в конструкцию схемы преобразователя частоты может включаться помехозащитный фильтр, ликвидирующий:

наводимые работающим оборудованием электрические разряды.

Их возникновение сигнализирует контроллер, а для уменьшения воздействия используется экранированная проводка между двигателем и выходными клеммами инвертора.

С целью улучшения точности работы асинхронных двигателей в схему управления частотных преобразователей включают:

ввода связи с расширенными возможностями интерфейса;

информационный Led-дисплей, отображающий основные выходные параметры;

тормозной прерыватель и встроенный ЭМС фильтр;

систему охлаждения схемы, основанную на обдуве вентиляторами повышенного ресурса;

функцию прогрева двигателя посредством постоянного тока и некоторые другие возможности.

Эксплуатационные схемы подключения

Частотные преобразователи создаются для работы с однофазными или трехфазными сетями. Однако, если есть промышленные источники постоянного тока с напряжением 220 вольт, то от них тоже можно запитывать инверторы.

Трехфазные модели рассчитываются на напряжение сети 380 вольт и выдают его на электродвигатель. Однофазные же инверторы питаются от 220 вольт и на выходе выдают три разнесенных по времени фазы.

Схема подключения частотного преобразователя к двигателю может быть выполнена по схемам:

Обмотки двигателя собираются в «звезду» для преобразователя, запитанного от трехфазной сети 380 вольт.

По схеме «треугольник» собирают обмотки двигателя, когда питающий его преобразователь подключен к однофазной сети 220 вольт.

Выбирая способ подключения электрического двигателя к преобразователю частоты надо обращать внимание на соотношение мощностей, которые может создать работающий двигатель на всех режимах, включая медленный, нагруженный запуск, с возможностями инвертора.

Нельзя постоянно перегружать частотный преобразователь, а небольшой запас его выходной мощности обеспечит ему длительную и безаварийную работу.

Adblock
detector