Меню

Схема монтажа реверсивного асинхронного двигателя

Реверсивная схема подключения электродвигателя

Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

Переменная сеть: мотор 380 к сети 380

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

Для подключения дополнительно понадобятся:

  • Магнитный пускатель (или контактор) – КМ2;
  • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».

Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

  1. Включите автоматы АВ1 и АВ2;
  2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
  3. Двигатель работает.

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

Постоянный электроток: особенности

Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

  • с возбуждением независимым,
  • с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).

Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

В электротранспорте применяются агрегаты с последовательным возбуждением.

Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

Все способы включения электродвигателей постоянного тока могут реверсироваться:

  • Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
  • В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.

Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

Схема реверса асинхронного двигателя – советы электрика

Схемы торможения асинхронных двигателей

После отключения от сети электродвигатель продолжает движение по инерции. При всем этом кинетическая энергия расходуется на преодоление всех видов сопротивлений движению. Потому скорость электродвигателя через просвет времени, в течение которого будет израсходована вся кинетическая энергия, становится равной нулю.

Такая остановка электродвигателя при движении по инерции именуется свободным выбегом. Многие электродвигатели, работающие в длительном режиме либо со значительными нагрузками, останавливают методом свободного выбега.

В тех же случаях, когда длительность свободного выбега значительна и влияет на производительность электродвигателя (работа с частыми запусками), для сокращения времени остановки используют искусственный способ преобразования кинетической энергии, запасенной в передвигающейся системе, именуемый торможением.

Все методы торможения электродвигателей можно поделить на два главных вида: механическое и электронное.

При механическом торможении кинетическая энергия преобразуется в термическую, за счет которой происходит нагрев трущихся и прилегающих к ним частей механического тормоза.

При электронном торможении кинетическая энергия преобразуется в электронную и зависимо от метода торможения мотора или отдается в сеть, или преобразуется в термическую энергию, идущую на нагрев обмоток мотора и реостатов.

Более совершенными считают такие схемы торможения, при которых механические напряжения в элементах электродвигателя малозначительны

Схемы динамического торможения асинхронных движков

Для управления моментом при динамическом торможении асинхронным движком с фазным ротором по программке с заданием времени употребляются узлы схем, приведенные на рис. 1, из которых схема рис. 1, а применяется при наличии сети неизменного тока, а схема рис. 1, б — при отсутствии ее.

В качестве тормозных резисторов в роторе употребляются пусковые резисторы R1, включение которых в режиме динамического торможения делается отключением контакторов ускорения, показанных в рассматриваемых узлах схем условно в виде 1-го контактора КМ3, команда на отключение которого подается блокировочным контактом линейного контактора КМ1.

Рис. 1 Схемы управления динамическим торможением асинхронных движков с фазным ротором с заданием времени при наличии и отсутствии сети неизменного тока

Эквивалентное значение неизменного тока в обмотке статора при торможении обеспечивается в схеме рис. 1, а дополнительным резистором R2, а в схеме рис. 1. б подходящим выбором коэффициента трансформации трансформатора Т.

Контактор торможения КМ2 может быть избран как на неизменном, так и на переменном токе зависимо от требуемого числа включений в час и использования пусковой аппаратуры.

Приведенные на рис. 1 схемы управления могут употребляться для управления режимом динамического торможения асинхронного мотора с короткозамкнутым ротором. Для этого обычно употребляется схема с трансформатором и выпрямителем, приведенная на рис. 1, б.

Схемы торможения противовключением асинхронных движков

При управлении моментом при торможении противовключением асинхронного мотора с короткозамкнутым ротором с контролем скорости применяется узел схемы, приведенный на рис. 2.

В качестве реле противовключения употребляется реле контроля скорости SR, укрепляемое на движке. Реле настраивается на напряжение отпадания, соответственное скорости, близкой к нулю и равной (0,1 — 0,2) ωуст.

Схема употребляется для остановки мотора с торможением противовключением в реверсивной (рис. 2, а) в в нереверсивной (рис. 2, б) схемах. Команда SR употребляется для отключения контакторов КМ2 либо КМЗ и КМ4, отключающих обмотку статора от напряжения сети при скорости мотора, близкой к нулю. При реверсировании мотора команды SR не употребляются.

Читайте также:  Норма картерных газов дизельный двигатель

Рис. 2 Узлы схемы управления торможения противовключением асинхронного мотора с коооткозамкнутым ротором с контролем скорости при остановке в реверсивной и нереверсивной схемах

Узел управления асинхронным движком с фазным ротором в режиме торможения противовключеиием с одной ступенью, состоящей из R1 и R2, приведен на рис. 3. Управляющее реле противовключения KV, в качестве которого применяется, к примеру, реле напряжения неизменного тока типа РЭВ301, которое подключено к двум фазам ротора через выпрямитель V. Реле настраивается на напряжение отпадания.

Нередко для опции реле KV употребляется дополнительный резистор R3. Схема в главном используется при реверсировании АД со схемой управления, приведенной на рис. 3, а, но может употребляться и при остановке в нереверсивной схеме управления, приведенной на рис. 3, б.

При пуске мотора реле противовключения КV не вклгочатся и ступень противовключения резистора ротора R1 выводится сходу после подачи управляющей команды на запуск.

Рис. 3. Узлы схем управления торможением противовключением асинхронных движков с фазным ротором с контролем скорости при реверсе и остановке

В режиме противовключения после подачи команды на реверс (рис. 3, а) либо остановку (рис. 3, б) скольжение электродвигателя увеличивается и происходит включение реле KV.

Реле KV отключает контакторы КМ4 и КМ5 и тем вводит полное сопротивление Rl + R2 ротор мотора.

В конце процесса торможения при скорости асинхронного мотора, близкой к нулю и составляющей приблизительно 10 — 20 % установившейся исходной скорости ωпер = (0,1 — 0,2) ωуст, реле KV отключается, обеспечивая команду на отключение ступени противовключения R1 при помощи контактора КМ4 и на реверсирование электродвигателя в реверсивной схеме либо команду на остановку электродвигателя в нереверсивной схеме.

В приведенных схемах в качестве управляющего устройства может применяться командоконтроллер и другие аппараты.

Схемы механического торможения асинхронных движков

При остановке асинхронных движков, также для удержания механизма передвижения либо подъема, к примеру в крановых промышленных установках, в недвижном состоянии при отключенном движке применяется механическое торможение.

Оно обеспечивается электрическими колодочными либо другими тормозами с трехфазным электромагнитом переменного тока, который при включении растормаживает тормоз.

Электромагнит тормоза YB врубается и отключается совместно с движком (рис 4, а).

Напряжение на электромагнит тормоза YB может подаваться контактором торможения КМ2, если необходимо отключать тормоз не сразу с движком, а с некой задержкой по времени, к примеру после окончания электронного торможения (рис. 4, б)

Выдержку времени обеспечивает реле времени КТ, получающее команду на начало отсчета времени, обычно при выключении линейного контактора КМ1 (рис. 4, в).

Рис. 4. Узлы схем, осуществляющих механическое торможение асинхронных движков

В асинхронных электроприводах используются также электрические тормоза неизменного тока при управлении электродвигателем от сети неизменного тока.

Схемы конденсаторного торможения асинхронных движков

Для торможения АД с короткозамкнутым ротором применяется также конденсаторное торможение с самовозбуждением. Оно обеспечивается конденсаторами C1 — С3, присоединенными к обмотке статора. Врубаются конденсаторы по схеме звезды (рис. 5, а) либо треугольника (рис. 5, б).

Рис. 5. Узлы схем, осуществляющих конденсаторное торможение асинхронных движков

Школа для электрика

Реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором

Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: Реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором.

В наше время асинхронные двигателя очень широко используются на производственных предприятиях. Их устанавливают практически на всём оборудование. А ещё бы и не ставить, ведь они самые простые в конструкции, имеют самую простую схему запуска и практически не требуют профилактических ремонтов.

Но мы сегодня не будем говорить о достоинствах и преимуществах этих двигателей, давайте лучше поговорим, о том, как же изменить направления движения этих электрических машин.

Но прежде чем рассматривать схему реверса, я советую вам почитать такие статьи:

Схема пуска асинхронного двигателя.

Расчёт тока электродвигателя.

Думаю, эти статьи будут вам очень полезны.

Теперь, переходим к практике. Специально для читателей своего сайта, я нарисовал схему реверса на листке бумаги, сфотографировал её, и делюсь с вами. Картинка получилась неплохо, и все основные элементы на ней видно. Но если вдруг вам что-то не понятно, то задавайте свои вопросы в комментариях. Я с радостью на них отвечу.

Схема запуска и реверсивного управления трёхфазного асинхронного электродвигателя с короткозамкнутым ротором

Давайте для начала рассмотрим все элементы схемы.

QF – автоматический выключатель. Нужен для коммутации электрической схемы и для защиты от токов короткого замыкания.

KM1, KM2 – электромагнитные пускатели. Нужны для дистанционного запуска электродвигателя, и в данной схеме используются для реверса.

KK – тепловое реле. Используется для защиты электропривода от перегруза.

FU – предохранитель. Нужен для защиты цепей управления от токов короткого замыкания. И так же выступает в роли защиты от самопроизвольного включения привода в работу.

SB3 – кнопка стоп

SB1 – кнопка пуск «вперёд» или «вправо» и так далее.

SB2 – кнопка пуск «назад» или «влево» и так далее.

KM1, KM2 – блок-контакты электромагнитных пускателей. Нужны для подхвата.

KM1, KM2 – дополнительные блок-контакты пускателей. Выступают в роли блокировки от включения двух пускателей одновременно.

KM1, KM2 – катушки пускателей. Нужны для управления электромагнитными пускателями.

К – контакт теплового реле.

По элементам разобрались. Теперь давайте поговорим о том, как работает эта схема.

Для того чтобы запустить в работу электродвигатель, мы должны подать на него напряжение. Для этого включаем автоматический выключатель QF. Напряжение подаётся на контакты пускателей, и на цепь управления.

Теперь, чтобы двигатель начал вращаться нажимаем кнопку SB1. Этим действием мы подаём напряжение на катушку пускателя КМ1, пускатель втягивается, замыкаются силовые контакты и так же замыкается блок-контакт КМ1, а блок-контакт КМ2 размыкается. Двигатель при этом начинает вращаться

Теперь, чтобы запустить двигатель в другую сторону, нам нужно его сначала остановить. Для этого нажимаем кнопку SB3. Этим движением мы прекращаем подачу напряжения на цепь управления, и двигатель в любом случае остановиться, независимо от того в какую сторону он вращался.

Теперь для запуска электродвигателя в противоположную сторону. Нажимаем кнопку SB2. Напряжение подаются на катушку второго пускателя, он втягивается, замыкаются силовые контакты, замыкаются блок-контакты для подхвата, и размыкаются дополнительные блок-контакты. Двигатель начинает вращаться.

По сути, если разобраться, то схема очень простая. Главное понять принцип действия, и тогда вы легко сможете эту схему, переделать под свой какой-то вариант.

На этом у меня всё. Если есть вопросы, то задавайте их в комментариях. Если статья была вам полезной, то поделитесь нею со своими друзьями в социальных сетях, вступайте в группу и подписывайтесь на обновления сайта. Пока.

С уважением Александр!

Схемы включения асинхронных двигателей — бортжурнал Toyota Tercel Франкенштейн 1994 года на DRIVE2

Простые способы включения трехфазных двигателей в однофазную сеть

Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжениятрехфазной сети 380 /220 — 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В.Переключение двигателя с одного напряжения на другое производится подключением обмоток «назвезду» — для 380 В или на «треугольник» — на 220 В.

Если у двигателя имеется колодкаподключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание вкаком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов— обычно они собраны в пучки по 3 вывода.

В одном пучке собраны начала обмоток, в другом концы

(начала обмоток на схеме обозначены точкой).

В данном случае «начало» и «конец» — понятия условные, важно лишь чтобы направления намотоксовпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, ав «треугольнике» — обмотки должны быть соединены последовательно, т. е. конец одной с началомследующей. Для правильного подключения на «треугольник» нужно определить выводы каждой

обмотки, разложить их попарно и подключить по след. схеме:

Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку состороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальныепровода соединены по 2). Соединение трёх проводов является нулевой точкой звезды.

Эти 3провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Такимобразом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника. Если имеется6 выводов, но не объединены в пучки и не имеется возможности определить начала и концы.можно посмотреть здесь.

Читайте также:  Ремонт грм двигателя фольксваген гольф

Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать отнего чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет неболее 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подборарабочей емкости при изменяющейся нагрузке.

Трехфазный двигатель в однофазной сети этокомпромис, но во многих случаях это является единственным выходом.Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их некорректными по следующим причинам:1.

Рассчет производится на номинальную мощность, а двигатель редко работает в такомрежиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора икак следствие увеличенного тока в обмотке.2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической +/- 20%, что тоже указано не конденсаторе.

А если измерять емкость отдельного конденсатора, онаможет быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкостьк конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника,стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеетнапряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска

ненагруженного двигателя можно обойтись только рабочим конденсатором.

Направление вращения двигателя зависит от подключения конденсатора (точка а) к точке били в.Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле: Cмкф = P Вт /10, где C – ёмкость конденсатора в микрофарадах, P – номинальная мощностьдвигателя в ваттах.

Для начала достаточно, а точная подгонка должна производиться посленагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть вышенапряжения сети, но практика показывает, что успешно работают старые советские бумажныеконденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре.

У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защитыот хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такомуподходу я не призываю, просто информация для размышления.

Кроме того, если включить 160иВольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжениеувеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска,затруднено.

В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит отнагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равнойрабочему конденсатору до в 1,5 – 2 раза большей. В дальнейшем, для понятности, все чтоотносится к работе будет зеленого цвета, все что относится к пуску будет красного, что к

Включать пусковой конденсатор в простейшем случае можно при помощи нефиксированнойкнопки.Для автоматизации пуска двигателя можно применить реле тока. Для двигателеймощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшойпеределкой. Т. к.

конденсатор остаётся заряженным и в момент повторного запуска двигателя,между контактами возникает довольно сильная дуга и серебряные контакты свариваются, неотключая пусковой конденсатор после пуска двигателя.

Чтобы этого не происходило, следуетконтактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно-графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле,если мощность двигателя превышает номинальную мощность реле.

Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового релеболее толстым проводом и с меньшим количеством витков с таким расчётом, чтобы релеотключалось сразу же при выходе двигателя на номинальные обороты.

Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размерыоригинального.Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и воднофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА,

с ними лучше не связываться, в однофазной сети они не работают.

Практические схемы включения

Обобщающая схема включения

С1- пусковой, С2- рабочий, К1- нефиксирующаяся кнопка, диод и резистор- система торможения

Работает схема следующим образом: при переводе переключателя в положение 3 инажатии на кнопку К1 происходит пуск двигателя, после отпускания кнопки остается только рабочийконденсатор и двигатель работает на полезную нагрузку.

При переводе переключателя в положение1, на обмотку двигателя подается постоянный ток и двигатель тормозится, после остановкинеобходимо перевести переключатель в положениие 2, иначе двигатель сгорит, поэтомупереключатель должен быть специальным и фиксироваться только в положении 3 и 2, а положение1 должно быть включено только при удержании.

При мощности двигателя до 300Вт инеобходимости быстрого торможения, гасяший резистор можно не применять, при большеймощности сопротивление резистора подбирается по желаемому времени торможения, но не должно

быть меньше сопротивления обмотки двигателя.

Эта схема похожа на первую, но торможение здесь происходит за счет энергии запасенной вэлектролитическом конденсаторе С1 и время торможения будет зависить от его емкости. Как и влюбой схеме пусковую кнопку можно заменить на реле тока.

При включении переключателя в сетьдвигатель запускается и происходит заряд конденсатора С1 через VD1 и R1. Сопротивление R1подбирается в зависимости от мощности диода, емкости конденсатора и времени работы двигателядо начала торможения.

Если время работы двигателя между пуском и торможением превышает 1минуту, можно использовать диод КД226Г и резистор 7кОм не менее 4Вт. рабочее напряжениеконденсатора не менее 350В Для быстрого торможения хорошо подходит конденсатор отфотовспышки, фотовспышек много, а нужды в них больше нет.

При выключении переключательпереходит в положение замыкающее конденсатор на обмотку двигателя и происходит торможениепостоянным током. Используется обычный переключатель на два положения.

Схема реверсивного включения и торможенияЭта схема развитие предыдущей, здесь автоматически происходит запуск при помощитокового реле и торможение электролитическим конденсатором, а также реверсивное включение.Отличие этой схемы: сдвоеный трехпозиционный переключатель и пусковое реле.

Выкидывая изэтой схемы лишние элементы, каждый из которых имеет свой цвет, можно собрать схему нужнуюдля конкретных целей.

При желании можно перейти на кнопочное включение, для этого понадобятся один или два автоматических пускателя с катушкой на 220В Используется сдвоеный

переключатель на три положения.

Еще одна не совсем обычная схема автоматического включения.Как и в других схемах здесь есть система торможения, но ее при ненадобности легковыкинуть.

В этой схеме включения две обмотки соединены паралельно, а третья через системупуска и вспомогательный конденсатор, емкость которого примерно в два раза меньше необходимогопри включении треугольником.

Для изменения направления вращения нужно поменять местаминачало и конец вспомогательной обмотки, обозначеной красной и зеленой точками.

Запускпроисходит за счет зарядки конденсатора С3 и продолжительность запуска зависит от емкостиконденсатора, а емкость должна быть достаточно велика, чтобы двигатель успел выйти наноминальные обороты.

Емкость можно брать с запасом, так как после заряда конденсатор неоказывает заметного действия на работу двигателя. Резистор R2 нужен для разрядки конденсатораи тем самым подготовки его для следующего пуска, подойдет 30 кОм 2Вт. Диоды Д245 — 248подойдут любому двигателю. Для двигателей меньшей мощности соответственно уменьшится имощность диодов, и емкость конденсатора. Хоть и затруднительно сделать реверсивное включениепо данной схеме, но при желании и это можно. Потребуется сложный переключатель или пусковые

Использование электролитических конденсаторов в качестве пусковых и рабочих

Стоимость неполярных конденсаторов достаточно высока, да и не везде их можно найти.Поэтому, если их нет, можно применить электролитические конденсаторы, включенные по схеме ненамного сложнее. Емкость их достаточно велика при небольшом объеме, они не дефицитны и недороги. Но нужно учесть вновь возникшие факторы.

Рабочее напряжение должно быть не менее350 Вольт, включаться они могут только парами, как указано на схеме черным цветом, а в такомслучае емкость уменьшается вдвое. И если двигателю для работы нужно 100 мкФ, то конденсаторыС1 и С2 должны быть по 200мкФ.

У электролитических конденсаторов большой допуск по емкости, поэтому лучше собратьбатарею конденсаторов (обозначена зеленым цветом), легче будет подбирать фактическую емкостьнужную двигателю и кроме того у электролитов очень тонкие выводы, а ток при большой емкостиможет достигать значительных величин и выводы могут греться, а при внутреннем обрыве вызватьвзрыв конденсатора.

Поэтому вся батарея конденсаторов должна находиться в закрытой коробке,особенно во время экспериментов. Диоды должны быть с запасом по напряжению и по току,необходимому для работы. До 2кВт вполне подойдут Д 245 — 248. При пробое диода сгорает (взрывается) конденсатор.

Взрыв конечно сказано громко, пластмассовая коробка вполне защитит отразлета деталей конденсатора и от блестящего серпантина тоже. Ну вот, страшилки рассказаны,теперь немного о конструкции.

Читайте также:  Троит двигатель при резком нажатии газа ваз 2112

Как видно из схемы, минусы всех конденсаторов соединены вместе и, стало быть,конденсаторы старой конструкции с минусом на корпусе можно просто плотно перемотатьизолентой и поместить в пластмассовую коробку соответствующих размеров. Диоды нужнорасположить на изоляционной пластинке и при большой мощности поставить их на небольшиерадиаторы, а если мощность не велика и диоды не греются, то их можно поместить в ту же коробку.Включенные по такой схеме электролитические конденсаторы, вполне успешно работают как

пусковыми так и рабочими.

Включение пускового конденсатора при помощи реле тока.

Из теории известно, что пусковой ток в несколько раз превышает номинальный ток рабочегодвигателя, поэтому включение пускового конденсатора при включении трехфазного двигателя воднофазную сеть, можно осуществить автоматически, — при помощи реле тока.

Для двигателей до 0,5 кВт подойдёт пусковое реле от холодильника, стиральной машинытипа РП-1, с небольшой переделкой. Подвижные контакты надо заменить на графитовую илиугольную пластинку, выточенную из щётки коллекторного двигателя, по размерам оригинала. Т. к.

при повторном включении, ток заряженного конденсатора даёт большую искру на контактах, истандартные контакты свариваются между собой. При применении графита, такого явления ненаблюдалось. (Кроме того, следует отключить термореле).

Для двигателей до 1 кВт можно перемотать РП-1 проводом Ф1,2мм до заполнения катушки

Для более мощных двигателей следует изготовить реле тока по аналогии с РП-1, большегоразмера.Моточный провод реле должен соответствовать номинальному току двигателя, из расчёта5А / 1мм?Количество витков следует подобрать экспериментально, для чёткого включения реле призапуске и отключения после запуска. Лучше намотать больше витков и отматывать до достижения

четкого отключения после пуска.

Изменение оборотов трёхфазного асинхронного двигателя (380/220) включённого воднофазную сетьЧтобы не применять дорогой и сложный коллекторный двигатель в механизмах требующихизменения оборотов двигателя, можно обойтись асинхронным трёхфазным двигателем, введя вфазовый провод реостат или простейший регулятор мощности.

Переделка двигателя заключается в изменении якоря двигателя.По образцу якоря, установленного в двигателе изготавливается «массивный якорь» измагнитомягкой малоуглеродистой стали или из серого чугуна (СЧ). (Чугунный работает лучше.) Изстарого якоря можно выпрессовать вал и насадить на него массивный якорь.

1- медные стержни из проволоки Ф2-2,5мм запрессованы в чуть меньшие отверстияили на клею провода к ним просто припаяны 2-диск из графитовой щетки Ф на 1,5мм меньше Фкорпуса, толщина 1,5-2мм 3- корпус 4- обмотка 5- якорекКорпус реле можно изготовить из текстолита, гетинакса, эбонита и т. п.

Стержень —алюминиевая проволока, магнитный якорь — цилиндр из малоуглеродистой стали выточен в форместакана.Чтобы понятнее была конструкция самодельного реле, можно разобрать реле РП-1 иизготовить аналог, пропорционально увеличив детали. Примерный размер корпуса Ф30мм h 60мм.

Якорек и контактный диск должны свободно перемещаться по стержню. Пружина не должна быть

Включение и реверсирование трёхфазного асинхронного двигателя (380/220) в
однофазную сеть одним переключателем

Множество представленных в Интернете схем реверсирования необоснованно усложнены иимеют неоправданно большое количество переключателей.Предлагается простая схема включения и реверсирования одним переключателем.

Подойдёт практически любой переключатель имеющий 3 фиксированных положения,соответствующий мощности двигателя.При необходимости – данная схема облегчает автоматизацию включения – выключения иреверсирования двигателя.

При необходимости пускового конденсатора (включение нагруженного или

высокооборотистого двигателя), его можно подключать при помощи пусковой кнопки или реле тока.

Изменение оборотов трёхфазного асинхронного двигателя (380/220) включённого воднофазную сетьЧтобы не применять дорогой и сложный коллекторный двигатель в механизмах требующихизменения оборотов двигателя, можно обойтись асинхронным трёхфазным двигателем, введя в

фазовый провод реостат или простейший регулятор мощности.

По образцу якоря, установленного в двигателе изготавливается «массивный якорь» измагнитомягкой малоуглеродистой стали или из серого чугуна (СЧ). (Чугунный работает лучше.) Из

старого якоря можно выпрессовать вал и насадить на него массивный якорь.

Взято с Электронный журнал “Я электрик!” Выпуск #15 (февраль 2009 г.)

Я собираюсь использовать схему с использованием реле тока, для отключения пускового конденсатора.

Электрические схемы

Режим работы – прямой пуск электродвигателя, реверсивный (1 фидер).

Шкаф управления асинхронным двигателем предназначен для местного, дистанционного или автоматического управления одним электродвигателем (пуск электродвигателя, реверс и отключение вращающегося электродвигателя), работающим в продолжительном, кратковременном или повторно-кратковременном режимах.Реверс – это изменение направления вращения ротора.

Для реверса необходимо изменить направление вращения магнитного поля статора, что в трехфазных асинхронных двигателях достигается переменой мест двух любых проводов на клеммах трехфазной сети.Ящик имеет местную индикацию состояния работы и возможность для подключения дистанционного управления и дистанционной индикации состояния работы фидера.

Спецификация оборудования фирмы (Германия)

№НаименованиеКодКол-во
1 Автоматич.выключ. MS116-16.0 16 кА с регулир. тепловой защитой 1SAM250000R1011 1
2 Боковые доп.

контакты 1НО+1НЗ HK1-11 для автоматов типа MS116 1SAM201902R1001 1 3 Контактор AF16-30-10-13 с универсальной катушкой управления 100-250BAC/DC 1SBL177001R1310 2 4 Клемма M4/6 винт 4мм.кв. серая 1SNA115116R0700 6 5 Клемма M4/6.N винт 4мм.кв.

, синяя 1SNA125116R0100 1 6 Клемма M4/6.P винт 4мм.кв. Земля 1SNA165113R1600 2 7 Блокировка электромеханическая VEM4 для контакторов AF09…AF38 1SBN030111R1000 1 8 Контактный блок CA5-10 1НО фронтальный для A9..

A110 1SBN010010R1010 4 9 Контактный блок CA5-01 1Н3 фронтальный для A9..

A110 1SBN010010R1001 4 10 Лампа CL-523G зеленый со встроенным светодиодом 230В AC 1SFA619402R5232 2 11 Кнопка CP1-30R-01 красная без фиксации 1HЗ 1SFA619100R3041 1 12 Кнопка CP1-30G-10 зеленая без фиксации 1HO 1SFA619100R3012 2 13 Переключатель ONU2PBR 3-х поз.(1-0-2) (двухуровневый) 1SCA113972R1001 1 14 Клемма MA2,5/5 винт 2,5мм.кв. оранжевая 1SNA105075R2000 15 15 Клемма MA2,5/5.N винт 2,5мм.кв. синяя 1SNA125486R0500 2 16 Изолятор FEM6 Торц. для MA2,5-M10 серый 1SNA118368R1600 1 17 Фиксатор BAM3 Торц. для рейки DIN3, универсальный 1SNK900001R0000 2 18 SR2 Корпус шкафа с монт.платой 400х300х150мм ВхШхГ SRN4315K 1 19 Автомат.выкл-ль 1-полюсной S201 C6 2CDS251001R0064 1 20 Провод, маркировка, расходные материалы 1

Описание и свойства прямого пуска асинхронного электродвигателя

При пуске ротор двигателя, преодолевая момент нагрузки и момент инерции, разгоняется от частоты вращения п = 0 до п . Скольжение при этом меняется от sп = 1 до s. При пуске должны выполняться два основных требования: вращающий момент должен бить больше момента сопротивления (Мвр>Мс) и пусковой ток Iп должен быть по возможности небольшим.

В зависимости от конструкции ротора (короткозамкнутый или фазный), мощности двигателя, характера нагрузки возможны различные способы пуска: прямой пуск, пуск с использованием дополнительных сопротивлений, пуск при пониженном напряжении и др.

Пуск двигателя непосредственным включением на напряжение сети обмотки статора называется прямым пуском. Схема прямого пуска приведена на однолинейной электрической схеме. При включении контактора в первый момент скольжение s = l, а приведенный ток в роторе и равный ему ток статора

максимальны. По мере разгона ротора скольжение уменьшается и поэтому в конце пуска ток значительно меньше, чем в первый момент. В серийных двигателях при прямом пуске кратность пускового тока kI = IП / I1НОМ = ( 5,…,7), причем большее значение относится к двигателям большей мощности.

Значение пускового момента находится при s = 1:

Для серийных двигателей кратность пускового момента МП/ МНОМ = (1.0,…,1.8).

Приведенные данные показывают, что при прямом пуске в сети, питающей двигатель, возникает бросок тока, который может вызвать настолько значительное падение напряжение, что другие двигатели, питающиеся от этой сети, могут остановиться.

С другой стороны, из-за небольшого пускового момента при пуске под нагрузкой двигатель может не преодолеть момент сопротивления на валу и не тронется с места.

В силу указанных недостатков прямой пуск можно применять только у двигателей малой и средней мощности (примерно до 50 кВт).

График изменения тока и момента при пуске асинхронного двигателя с короткозамкнутым ротором.

Торможение двигателя

Для быстрой остановки двигателя может применяться способ – торможение противовключением. Когда магнитное поле статора вращается в одном направлении, а ротор в противоположном.

При этом угловая скорость ротора и создаваемый двигателем момент имеют противоположные знаки. Основным способом перевода работающего двигателя в этот режим является переключение любых двух фаз статора (реверс).

При этом изменяется направление вращения магнитного поля и двигатель переходит из точки А (рис.а; характеристика 1) в точку В (характеристика 2).

Электромагнитный момент Мэм изменяет знак, т.е. становится тормозным, и угловая скорость ротора, продолжающего по инерции вращаться в прежнем направлении, быстро уменьшается.

Если в точке С двигатель отключить от сети, ротор остановится.

В противном случае произойдет реверсирование двигателя – ротор начнет вращаться в противоположном направлении и перейдет в установившийся режим в точке D.

Реверсирование или торможение противовключением асинхронных двигателей с контактными кольцами средней и большой мощности осуществляется с одновременным подключением к цепи ротора дополнительного активного сопротивления с целью ограничения чрезмерно больших токов.

Adblock
detector