Как программировать электронный автомобильный ключ?
Главная страница » Как программировать электронный автомобильный ключ?
Электронные автомобильные ключи достаточно удобны в плане управления и защиты транспортного средства от проникновения злоумышленников. Для многих марок современных автомобилей допускается программировать эти аксессуары управления и брелоки непосредственно владельцам машин. При этом чтобы запрограммировать автомобильный ключ, потребуется наличие рабочих (уже запрограммированных) экземпляров.
Обобщённая процедура программирования непосредственно в автомобиле
Теоретически программирование проходит без проблем при условии точного исполнения всех действий. В крайнем случае, всегда остаётся вариант обращения в профессиональный сервис, если программирование автомобильного ключа своими руками выполнить не удаётся. Рассмотрим две возможных вариации этой «специфичной» работы, выполняемой в домашних условиях.
Пошаговый процесс программирования ключа — 1
-
- Внутри автомобиля занять кресло водителя, чтобы обеспечить свободный доступ к замку зажигания транспортного средства. Необходимо иметь два рабочих автомобильных (запрограммированный оригинал) ключа, чтобы запрограммировать третий экземпляр.
Рекомендуется обратиться к руководству пользователя конкретной марки автомобиля. Возможно, автомобильная документация содержит какие-то дополнительные условия программирования. Инструкции на многие модели автомобилей доступны онлайн.
Следует также учитывать — новые марки автомобилей выпускаются с улучшенными схемами электронных транспондеров. Как правило, в таких случаях программирование автомобильной уникальной противоугонной системы осуществляется дилером, фирменным автосервисом или с помощью специального ПО.
- Вставить оригинальный автомобильный запрограммированный ключ в паз замка зажигания и оставить в таком положении на некоторое время (для каждой марки автомобиля индивидуально от 5 до 20 минут). За это время подготовить два других автомобильных ключа (в том числе чистый — не запрограммированный), — расположить в доступном, легко досягаемом месте. В процессе потребуются быстрые действия с этими экземплярами, чтобы не заблокировать активный режим программирования.
- Повернуть первый экземпляр, вставленный в замке зажигания в положение активации электронной системы, но не в положение запуска автомобильного двигателя. Затем сразу же выполнить обратное действие на отключение.
- Далее проделать те же самые операции вторым (запрограммированным) автомобильным ключом. При этом следует помнить, что на извлечение первого экземпляра из замка зажигания автомобиля отводится около пяти секунд, не более. Иначе процесс активации блокируется.
- Следующим аналогичным действием — включением/ выключением, программируется третий «чистый» ключ. Теперь на замену в замке зажигания второго экземпляра третьим отводится около десяти секунд. После перевода в положение «выключено», оставить программируемый автомобильный ключ в замке зажигания на время паузы (5 – 20 минут).
- Дождаться зажигания индикатора безопасности на приборной панели автомобиля. Индикатор должен оставаться гореть в течение примерно трёх секунд. После этого новый запрограммированный автомобильный ключ допускается удалить из замка зажигания.
Пошаговый процесс программирования ключа — 2
Брелоки являются широко распространёнными устройствами удалённого управления транспортным средством и также доступны для программирования в случае необходимости
- Занять кресло водителя автомобиля, закрыть все двери. Поместить ключ внутрь замка зажигания и повернуть в положение активации электроники (не запуска двигателя).
- Активировать кнопку блокировки пульта дистанционного управления (брелока), направляя брелок на приемник сигнала (как правило – зеркало заднего вида). Удерживать кнопку блокировки на брелоке в течение нескольких секунд от момента поворота ключа в замке зажигания.
- Выключить поворотом ключа электронику и быстрым движением изъять ключ из замка зажигания. Система отводит на паузу между программированием каждого следующего экземпляра лишь несколько секунд. Если не успеть, активация программирования сбрасывается.
- Каждый новый ключ программируется сразу после предыдущего. Для некоторых автомобилей, возможно, придётся повторить цикл несколько раз для активации режима программирования. Успешная операция подтверждается звуком щелчка механизма блокировки.
Пример программирования Ford Transit Connect 2010 и других
- Вставить первый рабочий автомобильный ключ внутрь замка зажигания. Перевести в положение «включено» на 3 секунды, после чего вернуть положение «выключено».
- Извлечь из замка зажигания автомобиля первый рабочий ключ и вставить второй рабочий экземпляр. Операция по смене автомобильных ключей должна занимать не более 10 секунд, иначе алгоритм программирования сбросится.
- Второй, вставленный в замок зажигания автомобиля рабочий ключ, перевести в положение «включено» на 3 секунды, затем перевести замок зажигания в состояние «отключено».
- Извлечь второй автомобильный ключ из замка зажигания и вставить новый экземпляр — не запрограммированный. На операцию замены также отводится не более 10 секунд.
- Установить новый автомобильный не запрограммированный ключ в положение «включено» на 3 секунды, после чего вернуть к положению «отключено».
- После этой операции автомобильный ключ остаётся запрограммированным.
- Повторить процедуру пошагово с 1 по 5, если требуется программирование дополнительных экземпляров.
Пример программирования брелоков Ford Transit Connect
Программирование дистанционного брелока (RKE — Remote Keyless Entry — удалённый вход без ключа) выполняется следующим образом:
До 4 брелоков RKE допустимо программировать на транспортное средство Ford Transit Connect 2010 года и позже при условии единовременного программирования.
- Разблокировать и закрыть все двери автомобиля. Зажигание выставить в состояние «отключено».
- Установить автомобильное зажигание из состояния «отключено» в состояние «включено» 4 раза подряд. На всю процедуру отводится не более 6 секунд. После четвертого перевода автомобильного зажигания в состояние «отключено», если всё выполнено в точности, общий электронный модуль входит в режим программирования, о чём свидетельствует звуковой сигнал.
- Не более чем за 10 секунд от момента предыдущей операции нажать любую кнопку на новом брелоке RKE. Автомобильная электроника выдаст звуковой сигнал, подтверждающий успешное программирование брелока RKE. Повторить шаг 3 для дополнительных автомобильных брелоков RKE, которые необходимо запрограммировать.
- После завершения процедуры программирования всех брелоков RKE проверить их в работе. Если дверные блокировочные замки не срабатывают, можно попытаться повторить процесс или же придётся обращаться к официальному дилеру.
Ошибки программирования часто появляются, если перед активацией брелоков RKE выдержка по времени составляет более 10 секунд или по причине завышения числа новых программируемых брелоков RKE.
Автомобильный ключ — другие варианты владельцам техники
Компактный пульт от Silca ( Silca Remote Car Key) — поддерживает функцию программного дублирования оригинального ключа. Имеет три кнопки управления багажником
Примерно по такой же схеме выполняется программирование для других марок транспортных средств, например, для Ford Fiesta 2011 года выпуска и далее.
Фактически аналогичную технологию программирования поддерживают автомобили других производителей. Разница может отмечаться лишь по временной паузе, которая даётся на смену ключей в процессе программирования.
Существует также вариант использования специального программного обеспечения и сервисных наборов, к примеру, от компаний Silca и Advanced Diagnostics или SPDiagnostics. При обращении к варианту специального ПО, владельцам автомобилей открывается ещё больше возможностей.
Транзисторные ключи: схема, принцип работы и особенности
Микроконтроллерами можно производить управление мощными устройствами – лампами накаливания, нагревательными ТЭНами, даже электроприводами. Для этого используются транзисторные ключи – устройства для коммутации цепи. Это универсальные приборы, которые можно применить буквально в любой сфере деятельности – как в быту, так и в автомобильной технике.
Что такое электронный ключ?
Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:
На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи. Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора.
Коммутация нагрузки
Простыми схемами на транзисторных ключах можно производить коммутацию токов в интервале 0,15. 14 А, напряжений 50. 500 В. Все зависит от конкретного типа транзистора. Ключ может производить коммутацию нагрузки 5-7 кВт при помощи управляющего сигнала, мощность которого не превышает сотни милливатт.
Можно применять вместо транзисторных ключей простые электромагнитные реле. У них имеется достоинство – при работе не происходит нагрев. Но вот частота циклов включения и отключения ограничена, поэтому использовать в инверторах или импульсных блоках питания для создания синусоиды их нельзя. Но в общем принцип действия ключа на полупроводниковом транзисторе и электромагнитного реле одинаков.
Электромагнитное реле
Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.
Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.
Выводы электромагнитного реле
Обычно в электромагнитных реле имеется 5 выводов:
- Два контакта, предназначенных для управления. К ним подключается обмотка возбуждения.
- Три контакта, предназначенных для коммутации. Один общий контакт, который нормально замкнут и нормально разомкнут с остальными.
В зависимости от того, какая схема коммутации применяется, используются группы контактов. Полевой транзисторный ключ имеет 3-4 контакта, но функционирование происходит таким же примерно образом.
Как работает электромагнитное реле
Принцип работы электромагнитного реле довольно простой:
- Обмотка через кнопку соединяется с питанием.
- В разрыв цепи питания потребителя включаются силовые контакты реле.
- При нажатии на кнопку подается питание на обмотку, происходит притягивание пластины и замыкание группы контактов.
- Подается ток на потребителя.
Примерно по такой же схеме транзисторные ключи работают – нет только группы контактов. Их функции выполняет кристалл полупроводника.
Проводимость транзисторов
Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:
К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.
Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.
Транзистор в режиме ключа
Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:
- От микроконтроллера через переход «база — эмиттер».
- При этом канал «коллектор — эмиттер» открывается.
- Через канал «коллектор — эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.
Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов — около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.
Принцип работы транзистора
Элемент работает точно так же, как и в режиме усилителя мощности. По сути, к входу подается небольшой ток управления, который усиливается в несколько сотен раз за счет того, что изменяется сопротивление между эмиттером и коллектором. Причем это сопротивление зависит от величины тока, протекающего между эмиттером и базой.
В зависимости от типа транзистора меняется цоколевка. Поэтому, если вам нужно определить выводы элемента, нужно обратиться к справочнику или даташиту. Если нет возможности обратиться к литературе, можно воспользоваться справочниками для определения выводов. Еще есть особенность у транзисторов – они могут не полностью открываться. Реле, например, могут находиться в двух состояниях – замкнутом и разомкнутом. А вот у транзистора сопротивление канала «эмиттер — коллектор» может меняться в больших пределах.
Пример работы транзистора в режиме ключа
Коэффициент усиления – это одна из основных характеристик транзистора. Именно этот параметр показывает, во сколько раз ток, протекающий по каналу «эмиттер — коллектор», выше базового. Допустим, коэффициент равен 100 (обозначается этот параметр h21Э). Значит, если в цепь управления подается ток 1 мА (ток базы), то на переходе «коллектор — эмиттер» он будет 100 мА. Следовательно, произошло усиление входящего тока (сигнала).
При работе транзистор нагревается, поэтому он нуждается в пассивном или активном охлаждении – радиаторах и кулерах. Но нагрев происходит только в том случае, когда проход «коллектор — эмиттер» открывается не полностью. В этом случае большая мощность рассеивается – ее нужно куда-то девать, приходится «жертвовать» КПД и выпускать ее в виде тепла. Нагрев будет минимальным только в тех случаях, когда транзистор закрыт или открыт полностью.
Режим насыщения
У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база — эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.
Практические конструкции
Практических схем использования транзисторов в режиме ключа очень много. Нередко их используют для включения и отключения светодиодов с целью создания спецэффектов. Принцип работы транзисторных ключей позволяет не только делать «игрушки», но и реализовывать сложные схемы управления. Но обязательно в конструкциях необходимо использовать резисторы для ограничения тока (они устанавливаются между источником управляющего сигнала и базой транзистора). А вот источником сигнала может быть что угодно – датчик, кнопочный выключатель, микроконтроллер и т. д.
Работа с микроконтроллерами
При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.
Применяются несложные конструкции, состоящие из таких элементов:
- Биполярный транзистор.
- Резистор для ограничения входного тока.
- Полупроводниковый диод.
- Электромагнитное реле.
- Источник питания 12 вольт.
Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.
Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор — эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.
Использование транзисторов в конструкциях
Нужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции. Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки. Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой.
Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя.
Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно.