Меню

Схема дарлингтона для двигателя

Выходные каскады усилителей мощности — Дарлингтон против Шиклаи.

Darlington и Sziklai составные транзисторы. Какую пару выбрать для выходного кас- када УМЗЧ, выполненного на биполярных транзисторах?

Несмотря на то, что в последнее время всё большая часть выходных каскадов промышленных УМЗЧ выполняется на мощных полевых MOSFET-ах, усилители на биполярных транзисторах никуда не подевались, мало того — на них строится и некоторое количество звуковоспроизводящей аппаратуры класса Hi-End.
Именно такой Hi-End усилитель мощности NHB-108 фирмы DarTZeel мы подробно обсудили странице (ссылка на страницу).

Одним из важных преимуществ полевых транзисторов является почти полное отсутствие входного тока в цепи затвора, что в большинстве случаев позволяет упростить схемотехнику и, как результат, конструкцию изделия. С другой стороны — значительные величины входных ёмкостей и приличный разброс параметров мощных MOSFET-ов делают в некоторых случаях предпочтительным использование именно биполярных приборов. Для максимального упрощения задачи схемотехника были созданы транзисторы с очень высоким коэффициентом усиления (более 1000), которые называются составными и которые дают возможность проектировать схемы на биполярниках, не сильно задумываясь о входных токах.

Наиболее часто используемое включение составных транзисторов в выходных каскадах усилителей — схема Дарлингтона (Рис. 1 а и б). Составные транзисторы по схеме включения Шиклаи используются значительно реже — и зря. Почему?
А ответ на этот вопрос дал конструктор электронных устройств и большой специалист в области звукотехники — Род Эллиот в своей статье «Шиклаи соединение против пары Дарлингтона».

Приведу наиболее, на мой взгляд, важные выдержки из этой статьи:

Пары Дарлингтона и Шиклая широко используются в линейных цепях, причём пары Дарлингтона являются наиболее распространёнными. Читатели моих Аудио Страниц могут заметить, что я в своих разработках для выходных каскадов усилителя мощности почти всегда без исключения использовал пары составных транзисторов по схеме включения Шиклая. Это относительно необычный подход, но для этого выбора имеются веские причины.
Давным-давно было установлено и продемонстрировано, что составная пара Шиклая обладает большей линейностью, чем пара Дарлингтона, и, хотя эта информация, по-видимому, игнорировалась большинством людей в течение очень долгого времени, она все ещё верна.

1. Линейность составных пар.

На Рис.2 показана пара простых повторителей напряжения, один из которых использует составную пару Шиклая, а другой — Дарлингтона.

Рис. 2 Повторители на парах Шиклая и Дарлингтона

Это довольно простые каскады, и трудно ожидать какой-либо существенной разницы между ними, учитывая то, что эти цепи охвачены 100%-ой отрицательной обратной связью.
Входной сигнал представляет собой синусоиду с пиковым напряжением 1 В (среднеквадратичное значение 707 мВ) и смещением постоянного тока 6 В, необходимым для того, чтобы установить рабочие точки выходов повторителей на уровне, близком к половине напряжения питания.

Первое, что бросается в глаза, это то, что составная пара Шиклая имеет более высокое выходное напряжение (это 99,5% от входного напряжения) по сравнению с парой Дарлингтона, которая передаёт на выход только 98,7%. Правда, это вряд ли можно назвать большой разницей, но, тем не менее, это заметно.

Более интересным параметром являются — искажения, вносимые этими двумя конфигурациями, и это продемонстрировано ниже.


Рис.3 Графики нелинейных искажений повторителей на парах Шиклая и Дарлингтона

Совершенно очевидно, что составная пара Шиклая (чёрная кривая) имеет меньший уровень гармоник, расположенных выше минимального уровня шума -120 дБ, и все они находятся на более низком уровне по отношению к Дарлингтону — на 20 дБ и более!
Как можно увидеть, пара Дарлингтона имеет и в 3 раза больший суммарный уровень искажений, чем составная пара Шиклая. Хотя обе цифры превосходны и значительно ниже порога слышимости, но следует помнить, что каждая ступень системы вносит некоторые искажения, поэтому для каждого каскада важно поддерживать как можно более высокий параметр линейности.

Читайте также:  Двигатель 4g15 руководство по ремонту

Как я отмечал во многих статьях — THD усилителя является важным показателем не только потому, что мы слышим низкие уровни искажений, но и потому, что он является хорошим индикатором общей линейности. А любая нелинейность вызывает рост интермодуляционных искажений (IMD), считающихся наиболее нежелательными в звуковом тракте.

2. Температурная стабильность.

Для таких конструкций, как двухтактные усилители мощности, термостабильность выходного каскада имеет первостепенное значение. Коэффициент усиления транзистора зависит от температуры, при увеличении температуры — увеличивается и коэффициент усиления. Эта температурная зависимость сохраняется вплоть до температур, которые могут вызвать пробой полупроводника. Кроме того, с ростом температуры уменьшается напряжение база-эмиттер транзистора (примерно на 2 мВ/°C), поэтому определённые средства стабилизации тока смещения являются обязательными.

В составной паре Sziklai влияние температурной зависимости выходного транзистора Q2 значительно меньше, чем влияние драйвера Q1. Основным элементом, определяющим ток смещения, является именно управляющий транзистор, который рассеивает сравнительно небольшую мощность, в связи с чем — на нём гораздо проще поддерживать постоянную температуру.

Как итог — общая температурная зависимость составной пары Шиклая значительно ниже, чем у пары Дарлингтона, выходной ток которого зависит от напряжений база-эмиттер двух каскадно соединённых транзисторов, в результате чего эффект удваивается.
Это усугубляется тем фактом, что большинство усилителей, использующих выходной каскад Дарлингтона, имеют драйвер и силовой транзистор в одном корпусе, а потому оказываются установленными в одной точке радиатора.

Соберём схемы для проверки температурной зависимости транзисторных пар Шиклая и Дарлингтона


Рис.4 Схемы для проверки температурной зависимости составных транзисторов

и проверим сказанное выше.

Температура транзистора

Sziklai пара

Darlington пара

Q1, Q3 (Driver)

Q2, Q4 (Output)

Выходной ток

Выходной ток

25 °C

25 °C

41 mA

41 mA

75 °C

25 °C

123 mA

96 mA

25 °C

75 °C

44 mA

87 mA

75 °C

75 °C

126 mA

148 mA

В таблице приведены температурные зависимости двух цепей, изображённых на Рис.4.
Поскольку гораздо проще поддерживать постоянную температуру на драйверных транзисторах, очевидно, что будет и гораздо проще поддерживать стабильный выходной ток в составной паре Шиклаи, по сравнению с цепью, использующей пару Дарлингтона.
Это было доказано на практике. Ни один из моих проектов не имеет проблем с термостабильностью, и все биполярные конструкции используют выходной каскад, выполненный на составной паре Шиклаи.

2. Двухтактные выходные каскады.

Три типовые схемы выходных каскадов усилителей мощности показаны на Рис.5. Очевидно, что есть и другие, но они обычно базируются на той или иной комбинации из представленных на рисунке.


Рис.5 Три основные схемы выходных каскадов усилителей мощности

Самой старой из представленных схем является первая схема (A) — каскад квазикомплементарной симметрии. Эта схема являлась основной до того момента, как появились комплементарные пары транзисторов разной проводимости.
А как только начался выпуск комплементарных транзисторов, основное распространение получила полностью симметричная конфигурация (B) с использованием пар Дарлингтона. В течение многих лет и до сих пор — этот тип выходного каскада остаётся самым распространённым.
При соответствующем выборе смещения все эти схемы имеют довольно хорошие характеристики искажений, причём пара Шиклаи является лучшей, а квазикомплементарная — худшей.
Все каскады, выполненные в соответствии со схемами, показанными на Рис.5, имеют менее 1% THD при нагрузке 8 Ом (Шиклаи — 0,05%, Дарлингтон — 0,23%, квазикомплементарный — 0,65%).

По причинам, которые я всегда находил неясными и несколько загадочными, я обнаружил, что каждый усилитель, который я проектировал с использованием конфигурации Шиклаи, имел паразитные колебания на отрицательной полуволне.
Добавление конденсатора небольшой ёмкости (обычно 220 пФ), установленного, как показано на схеме, было необходимо каждый раз и полностью устраняло эту проблему.

Составной транзистор. Транзисторная сборка Дарлингтона

Особенности и области применения составных транзисторов

Если открыть любую книгу по электронной технике, сразу видно как много элементов названы по именам их создателей: диод Шоттки, диод Зенера (он же стабилитрон), диод Ганна, транзистор Дарлингтона.

Инженер-электрик Сидни Дарлингтон (Sidney Darlington) экспериментировал с коллекторными двигателями постоянного тока и схемами управления для них. В схемах использовались усилители тока.

Инженер Дарлингтон изобрёл и запатентовал транзистор, состоящий из двух биполярных и выполненный на одном кристалле кремния с диффундированными n (негатив) и p (позитив) переходами. Новый полупроводниковый прибор был назван его именем.

В отечественной технической литературе транзистор Дарлингтона называют составным. Итак, давайте познакомимся с ним поближе!

Устройство составного транзистора.

Как уже говорилось, это два или более транзисторов, изготовленных на одном полупроводниковом кристалле и запакованные в один общий корпус. Там же находится нагрузочный резистор в цепи эмиттера первого транзистора.

У транзистора Дарлингтона те же выводы, что и у всем знакомого биполярного: база (Base), эмиттер (Emitter) и коллектор (Collector).


Схема Дарлингтона

Как видим, такой транзистор представляет собой комбинацию нескольких. В зависимости от мощности в его составе может быть и более двух биполярных транзисторов. Стоит отметить, что в высоковольтной электронике также применяется транзистор, состоящий из биполярного и полевого. Это IGBT транзистор. Его также можно причислить к составным, гибридным полупроводниковым приборам.

Основные особенности транзистора Дарлингтона.

Основное достоинство составного транзистора это большой коэффициент усиления по току.

Следует вспомнить один из основных параметров биполярного транзистора. Это коэффициент усиления (h21). Он ещё обозначается буквой β («бета») греческого алфавита. Он всегда больше или равен 1. Если коэффициент усиления первого транзистора равен 120, а второго 60 то коэффициент усиления составного уже равен произведению этих величин, то есть 7200, а это очень даже неплохо. В результате достаточно очень небольшого тока базы, чтобы транзистор открылся.

Инженер Шиклаи (Sziklai) несколько видоизменил соединение Дарлингтона и получил транзистор, который назвали комплементарный транзистор Дарлингтона. Вспомним, что комплементарной парой называют два элемента с абсолютно одинаковыми электрическими параметрами, но разной проводимости. Такой парой в своё время были КТ315 и КТ361. В отличие от транзистора Дарлингтона, составной транзистор по схеме Шиклаи собран из биполярных разной проводимости: p-n-p и n-p-n. Вот пример составного транзистора по схеме Шиклаи, который работает как транзистор с n-p-n проводимостью, хотя и состоит из двух различной структуры.


схема Шиклаи

К недостаткам составных транзисторов следует отнести невысокое быстродействие, поэтому они нашли широкое применение только в низкочастотных схемах. Такие транзисторы прекрасно зарекомендовали себя в выходных каскадах мощных усилителей низкой частоты, в схемах управления электродвигателями, в коммутаторах электронных схем зажигания автомобилей.

Хорошо зарекомендовал себя для работы в электронных схемах зажигания мощный n-p-n транзистор Дарлингтона BU931.

Основные электрические параметры:

Напряжение коллектор – эмиттер 500 V;

Напряжение эмиттер – база 5 V;

Ток коллектора – 15 А;

Ток коллектора максимальный – 30 А;

Мощность рассеивания при 25 0 С – 135 W;

Температура кристалла (перехода) – 175 0 С.

На принципиальных схемах нет какого-либо специального значка-символа для обозначения составных транзисторов. В подавляющем большинстве случаев он обозначается на схеме как обычный транзистор. Хотя бывают и исключения. Вот одно из его возможных обозначений на принципиальной схеме.

Напомню, что сборка Дарлингтона может иметь как p-n-p структуру, так n-p-n. В связи с этим, производители электронных компонентов выпускают комплементарные пары. К таким можно отнести серии TIP120-127 и MJ11028-33. Так, например, транзисторы TIP120, TIP121, TIP122 имеют структуру n-p-n, а TIP125, TIP126, TIP127 — p-n-p.

Также на принципиальных схемах можно встретить и вот такое обозначение.

Примеры применения составного транзистора.

Рассмотрим схему управления коллекторным двигателем с помощью транзистора Дарлингтона.

При подаче на базу первого транзистора тока порядка 1мА через его коллектор потечёт ток уже в 1000 раз больше, то есть 1000мА. Получается, что несложная схема обладает приличным коэффициентом усиления. Вместо двигателя можно подключить электрическую лампочку или реле, с помощью которого можно коммутировать мощные нагрузки.

Если вместо сборки Дарлингтона использовать сборку Шиклаи то нагрузка подключается в цепь эмиттера второго транзистора и соединяется не с плюсом, а с минусом питания.

Если совместить транзистор Дарлингтона и сборку Шиклаи, то получится двухтактный усилитель тока. Двухтактным он называется потому, что в конкретный момент времени открытым может быть только один из двух транзисторов, верхний или нижний. Данная схема инвертирует входной сигнал, то есть выходное напряжение будет обратно входному.

Это не всегда удобно и поэтому на входе двухтактного усилителя тока добавляют ещё один инвертор. В этом случае выходной сигнал в точности повторяет сигнал на входе.

Применение сборки Дарлингтона в микросхемах.

Широко используются интегральные микросхемы, содержащие несколько составных транзисторов. Одной из самых распространённых является интегральная сборка L293D. Её частенько применяют в своих самоделках любители робототехники. Микросхема L293D — это четыре усилителя тока в общем корпусе. Поскольку в рассмотренном выше двухтактном усилителе всегда открыт только один транзистор, то выход усилителя поочерёдно подключается или к плюсу или к минусу источника питания. Это зависит от величины входного напряжения. По сути дела мы имеем электронный ключ. То есть микросхему L293 можно определить как четыре электронных ключа.

Вот «кусочек» схемы выходного каскада микросхемы L293D, взятого из её даташита (справочного листа).

Как видим, выходной каскад состоит из комбинации схем Дарлингтона и Шиклаи. Верхняя часть схемы — это составной транзистор по схеме Шиклаи, а нижняя часть выполнена по схеме Дарлингтона.

Многие помнят те времена, когда вместо DVD-плееров были видеомагнитофоны. И с помощью микросхемы L293 осуществлялось управление двумя электродвигателями видеомагнитофона, причём в полнофункциональном режиме. У каждого двигателя можно было управлять не только направлением вращения, но подавая сигналы с ШИМ-контроллера можно было в больших пределах управлять скоростью вращения.

Весьма обширное применение получили и специализированные микросхемы на основе схемы Дарлингтона. Примером может служить микросхема ULN2003A (аналог К1109КТ22). Эта интегральная схема является матрицей из семи транзисторов Дарлингтона. Такие универсальные сборки можно легко применять в радиолюбительских схемах, например, радиоуправляемом реле. Об этом я поведал тут.

Adblock
detector