Схема аналоговой вычислительной машины
Другим существенным признаком, используемым при классификации вычислительных машин, является вид представления величия, с которыми оперирует машина в процессе работы. По этому признаку все вычислительные машины делят на класс цифровых и класс аналоговых вычислительных машин. При этом понятием цифровая вычислительная машина обобщаются вычислительные устройства, производящие операции над цифровыми кодами, а понятием аналоговая вычислительная машина — вычислительные машины (устройства), производящие операции над непрерывно изменяющимися значениями физических (аналоговых) величин. [c.5]
К аналоговым вычислительным машинам относятся, например, логарифмические линейки, планиметры, интеграторы, аналоговые вычислительные машины и т. д. [c.6]
Аналоговые вычислительные машины находят широкое применение при решении различных задач, где требуется быстрое получение результата при его относительно невысокой точности. [c.6]
Электронные аналоговые вычислительные машины относятся к классу машин непрерывного действия. Особенностью машин этого класса является то, что в процессе вычислений математические величины изображаются в виде непрерывных значений каких-либо физических величин (длин, углов, напряжений, токов и т. д.). Результат математической операции в аналоговых машинах получается, как правило, сразу же после ввода исходных данных и изменяется непрерывно по мере их изменения. [c.123]
Конструктивно аналоговые вычислительные машины состоят из ряда отдельных блоков, каждый из которых служит для выполнения какой-либо одной математической операции (сложения, вычитания, умножения, деления, интегрирования, образования заданной функции и т. д.). Эти блоки соединяются между собой в последовательности, отвечающей конкретному виду решаемого уравнения. Если машина предназначена для решения только одного вида уравнений, то состав математических устройств машины и их соединение между собой постоянны. Такие машины являются узкоспециализированными. [c.124]
Общая особенность аналоговых вычислительных машин — это ограниченная точность вычислений, которая определяется качеством изготовления отдельных узлов и принятыми допусками и достигает в лучших образцах 4—5 верных значащих десятичных цифр результата. [c.124]
Любая задача на подобной машине решается таким образом, что в необходимый момент времени на всех устройствах машины, участвующих в ее решении, производятся одновременно все требуемые уравнением математические преобразования, соответствующие текущему значению переменного. Поэтому тип и сложность математических задач, которые могут быть решены на аналоговых вычислительных машинах, ограничены составом оборудования машины. Исходя из этого при создании таких машин их стараются конструировать достаточно гибкими, позволяющими решать сравни тельно широкий круг инженерно-технических, научных и исследовательских задач Машины этого класса, работая в реальном масштабе времени, широко применяются в автоматических и автоматизированных системах управления. [c.124]
Электронные аналоговые вычислительные машины [c.124]
Аппаратура автоматической оптимизации ЛАО предназначена для автоматизации, решения на аналоговых вычислительных машинах краевых и вариационных задач, сводящихся к задачам оптимизации, из различных областей науки и,техники, и находит широкое применение в вычислительных центрах и организациях, использующих аналоговые машины любого типа. [c.137]
Положительный опыт контроля за соблюдением разработанных оптимальных норм загрузки в непрерывных химических процессах показывает высокую эффективность нормативных методов контроля затрат на постоянные заделы незавершенного производства. В таких процессах, как правило, весьма высок уровень механизации и автоматизации. Управление ими осуществляют с помощью аналоговых вычислительных машин, обеспечивающих непрерывный контроль точечной информации и регулирование моментных значений технологических параметров в заданных режимах протекания реакций. Иначе говоря, аналоговые управляющие системы позволяют оптимизировать процесс загрузки сырья и полупродуктов в производственные системы обеспечивают возможность контроля отклонений от нормативных размеров постоянного задела незавершенного производства. С их помощью предотвращают все случаи переполнения емкостей, что значительно облегчает контроль за соблюдением норм загрузки сырья и Полупродуктов в отдельные емкости, особенно в герметически закрытое оборудование. [c.17]
Для аналоговых вычислительных машин трудно дать какой-либо общий принцип построения. Специальные электронные схемы, например, для интегрирования, умножения, сравнения, соединяют друг с другом таким образом, который определяется ходом решения конкретной проблемы. [c.261]
СПРОСА И ПОТРЕБЛЕНИЯ 107 Аналоговое моделирование 45 АНАЛОГОВЫЕ ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ 145 Аппаратное МО 150 АППРОКСИМАЦИЯ ПРОИЗВОДСТВЕННО — ТЕХНОЛОГИЧЕСКИХ ВОЗМОЖНОСТЕЙ 89 Ассортиментный набор 57 Базисная точка 126 БАЗИСНОЕ РЕШЕНИЕ 116 БАЙТ 145 БАЛАНСОВЫЙ МЕТОД 75 БАНК ДАННЫХ 132 БАРОМЕТРЫ В ЭКОНОМИКЕ 90 БЕЗУСЛОВНЫЙ СТАТИСТИЧЕСКИЙ ПРОГНОЗ 90 БИБЛИОТЕКА СТАНДАРТНЫХ [c.156]
Вычислительная техника может работать как с аналоговыми, так и с дискретными (цифровыми) сигналами. Соответственно, существуют аналоговые вычислительные машины (АВМ) и цифровые вычислительные машины (ЦВМ), причем последние получили значительно большее распространение. [c.10]
К вычислительной технике относятся электронно-вычислительные, управляющие и аналоговые машины, а -также цифровые вычислительные машины и устройства. [c.135]
Организация рабочего места конструктора призвана обеспечить возможность выполнения проектно-конструк-торских работ. Одним из основных видов оборудования является чертежный станок (кульман), оснащенный набором специальных чертежных и вспомогательных приспособлений и средств малой механизации конструкторского труда. Кроме того, рабочее место конструктора оснащается малыми вычислительными машинами, аналоговой техникой, моделирующими установками, средствами связи с ЭВМ. [c.257]
Средства для чертежных работ и счетных операций средства выполнения чертежно-графических работ, построения и преобразования проекций, механизации и автоматизации проектирования, чертежные станки и доски, рабочие места конструкторов, математические устройства и приборы, электронно-вычислительные машины, моделирующие и аналоговые устройства. [c.258]
Эти системы (1,2. ), выполненные как аналоговые, цифровые или как их комбинация, входят в качестве локальных систем в общую иерархическую структуру автоматической системы управления технологическим процессом (АСУ ТП) с помощью управляющей вычислительной машины (УВМ) (рис.1). [c.34]
К вычислительной технике относят орудия и средства труда, при помощи которых ускоряются и улучшаются процессы, связанные с решением математических и вычислительных задач и работ, получением научно-технической и экономической информации, управлением технологическими и производственными процессами и др. К этой подгруппе основных средств (фондов) относят электронно-вычислительные машины, управляющие и аналоговые машины, цифровые вычислительные машины и устройства (клавишные вычислительные машины, перфорационные вычислительные машины, контрольники, сортировки, табуляторы и другую вычислительную и счетно-решающую технику, которой оборудуются машиносчетные бюро, станции, фабрики механизированного учета, вычислительные центры, автоматизированные системы управления). [c.71]
Вычислительная техника — совокупность средств (машины, устройства, приборы и др.), предназначенных для ускорения и автоматизации процессов, связанных с решением математических (вычислительных, логических) задач по заданному алгоритму. К ней относятся электронно-вычислительные, управляющие и аналоговые машины, цифровые вычислительные машины и устройства (клавишные вычислительные машины, перфорационные вычислительные машины и др.). [c.8]
Машина МН-14 (рис. 3.3) является типичным образцом современной аналоговой вычислительной техники высокого класса. Состав математических блоков позволяет решать обыкновенные дифференциальные уравнения до 20-го порядка, а также широкий класс других задач, к числу которых можно отнести умножение переменной на постоянный коэффициент больше или меньше единицы суммирование переменных интегрирование по времени дифференцирование воспроизведение переменных коэффициентов методом кусочно-постоянной аппроксимации перемножение двух переменных умножение или деление шести. переменных на одну общую переменную воспроизведение нелинейных функций от одной переменной методом кусочно-линейной аппроксимации воспроизведение специальных нелинейных функций воспроизведение тригонометрических функций. [c.128]
Все рекуррентные схемы стохастической аппроксимации, обсужденные в предыдущих параграфах, можно рассматривать как разностные уравнения. Эти процедуры хорошо приспособлены к решению задач аппроксимации на цифровых вычислительных машинах. При работе на аналоговых и гибридных вычислительных машинах более естественными являются непрерывные варианты процедур стохастической аппроксимации, которым соответствуют дифференциальные уравнения. [c.376]
Аналоговые и цифровые вычислительные машины. Вычислительные машины в основном подразделяются на аналоговые и цифровые. Аналоговой является вычислительная машина, которая делает расчеты с помощью физических аналогов переменных величин в задаче. Она действует аналогично тому, как счетная линейка, которая представляет собой пример очень простого неэлектронного вычислительного устройства аналогового типа. [c.69]
К группе Вычислительная техника относятся различные ЭВМ, управляющие, аналоговые и цифровые вычислительные машины и устройства (перфорационные, клавишные вычислительные машины), а также периферийное оборудование для сбора, фиксации и передачи информации, используемое в комплекте с вычислительными машинами. [c.61]
Машины и комплексы Электронные цифровые вычислительные с программным управлением общего назначения, специализированные и управляющие на базе всех типов процессоров Аналоговые и клавишные электронные вычислительные машины Устройства периферийные вычислительных комплексов и электронных машин [c.98]
К группе средств вычислительной техники в разных отраслях народного хозяйства относятся электронно-вычислительные, управляющие и аналоговые машины, цифровые вычислительные машины и устройства (клавишные вычислительные машины, перфорационные вычислительные машины и др.). [c.113]
Для преодоления основного недостатка аналоговых вычисли-тельных машин — ограниченной точности вычислений — в последнее время были разработаны так называемые гибридные , или цифро-аналоговые, вычислительные машины, в которых сочетаются достоинства аналоговых и цифровых1 машин. Машины этого типа применяются в тех случаях, когда практически мгновенно необходимо получать результаты вычислений с-достаточно высокой точностью. Подобные задачи встречаются при управлении сложными динамическими системами. [c.124]
Однако аналоговые модели рассчитаны на применение в технических системах и представляют собой своеобразный метод численного решения систем линейных и нелинейных уравнений, т.е. они моделируют объекты, элементы которых описаны, например, множеством дифференциальных уравнений, включая нелинейные. Такими объектами являются самолеты, ракеты, космические корабли и другие более простые технические устройства. Аналоговое моделирование трудно было применить при описании сложных социально-экономических объектов в связи с тем, что оно ориентировалось на исследование исключительно технических систем. Автору известна лишь одна попытка (в 60-х годах) директора Института автоматики и телемеханики АН СССР академика В.А. Трапезникова перенести подходы аналогового моделирования на исследование экономических объектов. Однако она не была поддержана экономистами, видимо, вследствие чрезвычайной новизны подхода, отсутствия достаточной формализации экономических объектов и неразвитости экономике-математических исследований в тот период. Кроме этого, в 70-е и 80-е годы аналоговое моделирование и аналоговые вычислительные машины в основном были замещены цифровой вычислительной техникой и цифровыми моделями. Эти модели способны, с одной стороны, более эффективно и точно решать системы уравнений, однако, с другой, в значительной степени деформировали подходы аналогового моделирования, в котором каждый моделируемый объект воссоздавался в модели путем эквивалентного замещения элементов объекта типовыми блоками. [c.283]
Особенно велика роль в повышении производительности конструкторского труда, качества проводимых работ, а в ряде случаев в обеспечении оптимальности принимаемых решений современных средств автоматизации, начиная от автоматических графопостроителей и кончая сложнейшими аналоговыми и цифровыми вычислительными машинами (АВМ и ЭВЦМ), вплоть до техники, обеспечивающей САПР. [c.103]
С—скважина СД — скважинный датчик УД — устьевой датчик РА — регистратор аналоговый ЭК.—электрокоммутатор БК — блок команд ЧЭ — частотомер электронный МПУ — малогабаритное печатающее устройство ПСПИ — пункт сбора и подготовки информации ЭВМ — электронно-вычислительная машина ПО — производственное объединение ИВЦ — информационно-вычислительный центр [c.197]
С целью использования достоинств и аналоговых, и цифровых вычислительных машин созданы аналого-цифровые вычислительные машины, производящие операции как над цифровыми кодами, так и над непрерывно изменяющимися значениями физических (аналоговых) величин. [c.6]
Краткие характеристики отдельных типов электронных аналоговых машин приводятся ниже, а общие сведения о них — в табл. 3.1. (Более полные данные об электронных вычислительных и специализированных машинах и устройствах можно получить в справочнике В. И. Г р у б о в и В. С. К и р д а н. Вычислительные машины и моделирующие устройства. Киев, изд-во Наукова думка , 1969.) [c.124]
Система АЦЭМС-1 предназначена для математического моделирования сложных динамических объектов в реальном масштабе времени с повышенной точностью. Она построена по принципу комбинирования в одном вычислительном комплексе аналоговой и цифровой форм представления машинных переменных с целью сочетания лучших свойств аналоговых и цифровых вычислительных машин. Одновременное использование цифровой и аналоговой вычислитель- [c.138]
Понятие алгоритма его свойства логические теории алгоритмов
Аналоговые вычислительные машины. Обобщенная структура
Аналоговая вычислительная машина (АВМ) — вычислительная машина, в которой каждому мгновенному значению переменной величины, участвующей в исходных соотношениях, ставится в соответствие мгновенное значение другой (машинной) величины, часто отличающейся от исходной физической природой и масштабным коэффициентом. Каждой элементарной математической операции над машинными величинами, как правило, соответствует некоторый физический закон, устанавливающий математические зависимости между физическими величинами на выходе и входе решающего элемента (например, законы Ома и Кирхгофа для электрических цепей, выражение для эффекта Холла, лоренцовой силы и т. д.).
В АВМ все математические величины представляются как непрерывные значения каких-либо физических величин. Главным образом, в качестве машинной переменной выступает напряжение электрической цепи. Их изменения происходят по тем же законам, что и изменения заданных функций. В этих машинах используется метод математического моделирования (создаётся модель исследуемого объекта). Результаты решения выводятся в виде зависимостей электрических напряжений в функции времени на экран осциллографа или фиксируются измерительными приборами. Основным назначением АВМ является решение линейных и дифференцированных уравнений.
высокая скорость решения задач, соизмеримая со скоростью прохождения электрического сигнала;
простота конструкции АВМ;
лёгкость подготовки задачи к решению;
наглядность протекания исследуемых процессов, возможность изменения параметров исследуемых процессов во время самого исследования.
— малая точность получаемых результатов (до 10%);
— алгоритмическая ограниченность решаемых задач;
— ручной ввод решаемой задачи в машину;
— большой объём задействованного оборудования, растущий с увеличением сложности задачи
Задачи
Контроль и управление . В системах автоматического управления АВМ пользуются, как правило, для определения или формирования закона управления, для вычисления сводных параметров процесса (кпд, мощность, производительность и др.). Если задано математическое выражение, определяющее связь сводного параметра или управляющего воздействия с координатами объекта, АВМ служат для решения соответствующего уравнения. Результат вычислений поступает либо на исполнительный механизм (замкнутая система), либо к оператору. Когда закон управления заранее не определён, а заданы лишь некоторый критерий оптимальности и граничные условия, АВМ применяются в системах поиска оптимального управления и служат математической моделью объекта.
Опережающий анализ , основанный на быстродействии. Многократно решая систему уравнений, описывающих управляемый процесс, учитывая его текущие характеристики, АВМ за короткое время «просматривает» большое число вариантов решений, отличающихся значениями параметров, подлежащих изменению при управлении процессом. Намного опережая ход процесса, АВМ прогнозирует сигналы управления, которые могут обеспечить необходимое качество протекания процесса. В режиме опережающего анализа АВМ выполняют функции либо машин-советчиков, либо управляющих машин, автоматически учитывающих текущие характеристики процесса и управляющих им по оптимальным показателям. Выбор наилучшего режима технологического процесса осуществляется также самонастраивающимися математическими машинами в режиме опережающего анализа.
Экспериментальное исследование поведения системы с аппаратурой управления или регулирования в лабораторных условиях. С помощью АВМ воспроизводится та часть системы, которая по каким-либо причинам не может быть воспроизведена в лабораторных условиях.
Анализ динамики систем управления или регулирования . Заданные уравнения объекта решаются в выбранном масштабе времени с целью нахождения основных параметров, обеспечивающих требуемое протекание процесса.
Решение задач синтеза систем управления и регулирования сводится к подбору по заданным техническим условиям структуры изменяемой части системы, функциональных зависимостей требуемого вида и значений основных параметров. Окончательный результат получается многократным повторением решения и сопоставлением его с принятым критерием близости.
Решение задач по определению возмущений или полезных сигналов, действующих на систему . В этом случае по дифференциальным уравнениям, описывающим динамическую систему, по значениям начальных условий, известному из эксперимента характеру изменения выходной координаты и статистическим характеристикам шумов в измеряемом сигнале определяется значение возмущения или полезного сигнала на входе. АВМ может также служить для построения приборов, автоматически регистрирующих возмущения и вырабатывающих сигнал управления в зависимости от характера и размера возмущений.
Эффективность применения
Повышение эффективности АВМ связано с внедрением в аналоговую технику цифровых методов, в частности цифровых дифференциальных анализаторов. Их применение снижает общий объём аппаратуры, хотя в остальных случаях они существенно уступают цифровым вычислительным машинам. Гораздо большими возможностями обладают гибридные вычислительные системы, у которых исходные величины представлены одновременно в цифровой и аналоговой форме.
Перспективны для полной автоматизации АВМ так называемые матричные модели . Их основной недостаток — большое количество аппаратуры — в связи с появлением интегральных схем уже не имеет решающего значения.
Решающие элементы
АВМ состоят из некоторого числа решающих элементов, которые по характеру выполняемых математических операций делятся на:.
линейные решающие элементы — выполняют операции суммирования, интегрирования, перемены знака, умножения на постоянную величину и др.
нелинейные (функциональные преобразователи) — воспроизводят нелинейные зависимости. Различают решающие элементы, предназначенные для воспроизведения заданной функции от одного, двух и большего числа аргументов. Из этого класса обычно выделяют устройства для воспроизведения разрывных функций одного аргумента (типичные нелинейности) и множительно-делительные устройства.
логические — к таким решающим элементам относятся устройства непрерывной логики, например предназначенные для выделения наибольшей или наименьшей из нескольких величин, а также устройства дискретной логики, релейные переключающие схемы и некоторые др. специальные блоки. Для связи устройств непрерывной и дискретной логики широко пользуются гибридными логическими устройствами (например, компараторами). Все логические устройства обычно объединяются в одном, получившем название устройства параллельной логики. Оно снабжается своим наборным полем для соединения отдельных логических устройств между собой и с остальными решающими элементами АВМ.
Вследствие не идеальности работы отдельных решающих элементов, неточности установки их коэффициентов передачи и начальных условий, решение, найденное с помощью АВМ, имеет погрешности. Результирующая погрешность зависит не только от перечисленных первичных источников, но и от характера и особенностей решаемой задачи. Практически можно считать, что погрешность при исследовании устойчивых нелинейных систем автоматического управления не превышает нескольких %, если порядок набираемой системы дифференциальных уравнений не выше 10-го.
Типы АВМ
В зависимости от физической природы машинных величин различают механические , пневматические , гидравлические , электромеханические и электронные АВМ. Наиболее распространены электронные АВМ, отличающиеся значительно более широкой полосой пропускания, удобством сопряжения нескольких машин между собой и с элементами аппаратуры управления. Решающие элементы АВМ строятся в основном на базе многокаскадных электронных усилителей постоянного тока с большим коэффициентом усиления в разомкнутом состоянии и глубокой отрицательной обратной связью
По структуре различают АВМ с ручным и с автоматическим программным управлением . В первом случае решающие элементы перед началом решения соединяются между собой в соответствии с последовательностью выполнения математических операций, задаваемых исходной задачей. В машинах с программным управлением последовательность выполнения отдельных математических операций может меняться в процессе решения задачи в соответствии с заданным алгоритмом решения
Аналоговые вычислительные машины. Обобщенная структура.
На основе подобия или изоморфизма
Линейные: +,-, *, 1/х, dx, любые Const
Нелинейные: /, интеграл, f (x, y, t)
АВМ – параллельный принцип
Принцип вычислений – параллельный
Входной сигнал – значение напряжения
Набор операций – основные арифметические d и s
Область значений – должна существовать модель, описывающая диф. и интегр. уравнениями
Требования к пользователю – навыки моделирования + инженерное образование
Это взято из лекций по ТВП
Гибридные вычислительные машины. Обобщенная структура
Гибридная вычислительная система, аналого-цифровая вычислительная машина, комбинированная вычислительная машина, комбинированный комплекс из нескольких электронных вычислительных машин, использующих различное представление величин (аналоговое и цифровое) и объединённых единой системой управления. В состав Г. в. с., кроме аналоговых и цифровых машин (АВМ и ЦВМ) и системы управления, обычно входят преобразователи представления величин, устройства внутрисистемной связи и периферийное оборудование (см. структурную схему на рис.). Г. в. с. — комплекс ЭВМ, в этом её главное отличие от гибридной вычислительной машины, названной так потому, что она строится на гибридных решающих элементах, либо с использованием аналоговых и цифровых элементов.
Расчленение вычислительного процесса в ходе решения задачи на отдельные операции, выполняемые АВМ и ЦВМ в комплексе, уменьшает объём вычислительных операций, возлагаемых на ЦВМ, что при прочих равных условиях существенно повышает общее быстродействие Г. в. с.
Различают аналого-ориентированные, цифро-ориентированные и сбалансированные Г. в. с. В системах первого типа ЦВМ используется как дополнительное внешнее устройство к АВМ, предназначенное для образования сложных нелинейных зависимостей, запоминания полученных результатов и для осуществления программного управления АВМ. В системах второго типа АВМ используется как дополнительное внешнее устройство ЦВМ, предназначенное для моделирования элементов реальной аппаратуры, многократного выполнения небольших подпрограмм.
Создание эффективных гибридных комплексов требует в первую очередь уточнения основных областей их применения и детального анализа типичных задач из этих областей. В результате этого устанавливают рациональную структуру гибридного комплекса и формируют требования к его отдельным частям.
Задачи, которые эффективно решаются на Г. в. с.
1. моделирование в реальном масштабе времени автоматических систем управления, содержащих как аналоговые, так и цифровые устройства; (пример, моделирование системы управления прокатного стана. Динамика процессов в нём воспроизводится на аналоговой машине, а специализированная управляющая станом машина моделируется на универсальной ЦВМ среднего класса. Вследствие кратковременности переходных процессов в приводах прокатных станов, полное моделирование таких процессов в реальном масштабе времени потребовало бы применения сверхбыстродействующих ЦВМ.);
2. воспроизведение в реальном масштабе времени процессов, содержащих высокочастотные составляющие и переменные, изменяющиеся в широком диапазоне (являются задачи управления движущимися объектами, в т. ч. и задачи самонаведения, а также задачи, возникающие при создании вычислительной части комплексных тренажеров. Для задач самонаведения характерно формирование траектории движения в процессе самого движения. Большая скорость изменения некоторых параметров при приближении объекта к цели требует высокого быстродействия управляющей системы, превышающего возможности современных ЦВМ, а большой динамический диапазон — высокой точности, трудно достижимой на АВМ При решении этой задачи на Г. в. с. целесообразно возложить воспроизводство уравнений движения вокруг центра тяжести на аналоговую часть, а движение центра тяжести и кинематические соотношения — на цифровую часть вычислительной системы.);
3. статистическое моделирование; моделирование биологических систем; решение уравнений в частных производных; оптимизация систем управления (относятся задачи, решение которых получается в результате обработки многих реализаций случайного процесса, например решение многомерных уравнений в частных производных методом Монте-Карло, решение задач стохастичемкого программирования, нахождение экстремума функций многих переменных. Многократная реализация случайного процесса возлагается на быстродействующую АВМ, работающую в режиме многократного повторения решения, а обработка результатов, воспроизводство функций на границах области, вычисление функционалов — на ЦВМ. Кроме того, ЦВМ определяет момент окончания счёта. Применение Г. в. с. сокращает время решения задач этого вида на несколько порядков по сравнению с применением только цифровой машины).
Применение Г. в. с. эффективно также при решении нелинейных уравнений в частных производных. При этом могут решаться как задачи анализа, так и задачи идентификации и оптимизации объектов. Примером задачи оптимизации может служить подбор нелинейности теплопроводного материала для заданного распределения температур; определение геометрии летательных аппаратов для получения требуемых аэродинамических характеристик; распределение толщины испаряющегося слоя, предохраняющего космические корабли от перегрева при входе в плотные слои атмосферы; разработка оптимальной системы подогрева летательных аппаратов с целью предохранения их от обледенения при минимальной затрате энергии на подогрев; расчёт сети ирригационных каналов и установление оптимальных расходов в них и т.п. При решении этих задач ЦВМ соединяется с сеточной моделью, многократно используемой в процессе решения.
Развитие Г. в. с. возможно в двух направлениях: построение специализированных Г. в. с., рассчитанных на решение только одного класса задач, и построение универсальных Г. в. с., позволяющих решать сравнительно широкий класс задач. Структура такого универсального гибридного комплекса (рис.) состоит из АВМ однократного действия, АВМ с повторением решения, сеточной модели, устройств связи между машинами, специального оборудования для решения задач статистического моделирования и периферийного оборудования. Помимо стандартного математического обеспечения ЭВМ, входящих в комплекс, в Г. в. с. требуются специальные программы, обслуживающие систему связи машин и автоматизирующие процесс подготовки и постановки задач на АВМ, а также единый язык программирования для комплекса в целом.
Наряду с новыми вычислительными возможностями в Г. в. с. возникают специфические особенности, в частности появляются погрешности, которые в отдельно работающих ЭВМ отсутствуют. Первичными источниками погрешностей являются временная задержка аналого-цифрового преобразователя, ЦВМ и цифро-аналогового преобразователя; ошибка округления в аналого-цифровом и цифро-аналоговом преобразователях; ошибка от неодновременной выборки аналоговых сигналов на аналого-цифровой преобразователь и неодновременной выдачи цифровых сигналов на цифро-аналоговый преобразователь; ошибки, связанные с дискретным характером выдачи результатов с выхода ЦВМ.
Структурная схема универсальной гибридной вычислительной системы: сплошной линией обозначены информационные, а пунктирной — управляющие каналы.
6. Цифровые вычислительные машины специального назначения. Микропроцессоры. Структура. Организация вычислений.
Принцип вычислений – последовательный
Входной сигнал – цифровой набор импульсов
Набор операций – основные арифметические
Область значений – любая
Популярны, так как:
Используются для решения задач в методе последовательной детализации. Подзадачи устойчивы достаточно
Большой класс стабильных задач (от калькуляторов до больших вычислительных комплексов)
Использование как сателлитов или сопроцессоров для распараллеливания данных
При разработке оптических сопроцессоров
Гибкие ВС для технологического производства
Микропроцессоры. Структура. Организация вычислений.
Микропроцессор – это программируемое устройство обработки информации.
Микропроцессор содержит 3 основных блока цифровой машины: схему управления (СУ), арифметико-логическое устройство (АЛУ), запоминающие устройства (ЗУ) в виде регистров.
Эти блоки соединены шиной данных, шиной адреса и линиями управления
АЛУ предназначено для обработки инфции (+,-, сдвиг влево или вправо, инверсия, И, ИЛИ, исключающее ИЛИ)
Буферный регистр нужен для записи операндов
Регистры –это быстродействующая внутренняя память. Каждый регистр хранит 1 слово данных.
Бывают регистры общего назначения и специальные
Регистры общего назначения – (B,C,D) нужны для хранения данных
Регистр состояния – хранит признаки операции;
Буферные регистры – для хранения операнда;
Аккумулятор – хранит результаты операций;
Регистр команд (INPUT) – хранит код выполняемой команды;
Счетчик команд (СК) – хранит адрес следующей выполняемой команды (0 FFFF);
Регистр адреса памяти(РАП). На входе 8 разрядная шина.
Схема управления (СУ) -поддерживает автоматическое выполнение цикла «выборка-исполнение» (обычно микропрограммируется)
Синхронизация работы МП с помощью таймера;
Управление последовательностью включения питания;
Определение кто и когда пользуется внутренней шиной данных;
тактовой частотой, определяющей максимальное время выполнения переключения элементов в ЭВМ;
2) разрядностью, т.е. максимальным числом одновременно обрабатываемых двоичных разрядов.
архитектурой. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы.
7. СуперЭВМ. Основные характеристики. Структура. Организация вычислительного процесса.
Появление в середине шестидесятых первого компьютера класса суперЭВМ, разработанного в фирме CDC знаменитым Сеймуром Крэем, ознаменовало рождение новой — векторной архитектуры. Начиная с этого момента суперкомпьютером принято называть высокопроизводительный векторный компьютер. Основная идея, положенная в основу новой архитектуры, заключалась в распараллеливании процесса обработки данных, когда одна и та же операция применяется одновременно к массиву (вектору) значений. В этом случае можно надеяться на определенный выигрыш в скорости вычислений. Идея параллелизма оказалась плодотворной и нашла воплощение на разных уровнях функционирования компьютера. Более подробное обсуждение аппаратной реализации параллельной обработки информации можно найти во второй главе, здесь же упомянем конвейерную обработку, многопроцессорность и т.д.
Основными особенностями модели параллельного программирования являются высокая эффективность программ, применение специальных приемов программирования и, как следствие, более высокая трудоемкость программирования, проблемы с переносимостью программ.
1 задача – работает несколько процессоров
много задач – каждый процессор решает свою задачу, а потом обмениваются информацией
по способу построения памяти
по способу передачи информации
Р – элементарный процессор
М – элемент памяти
Модель параллелизма данных основана на применении одной операции к множеству элементов структуры данных (пример такой операции — «;увеличить в два раза стипендию всем студентам группы 111»;). Программа, написанная в рамках данной модели, содержит последовательность таких операций. «;Зернистость»; вычислений мала, поскольку каждая операция над каждым элементом данных может считаться независимой задачей. Программист должен указать транслятору, как данные следует распределить между процессорами (т. е. между задачами). Транслятор генерирует SPMD-код, автоматически добавляя в него команды обмена данными. Методы разработки алгоритмов и анализа программ в модели с параллелизмом данных аналогичны тем, которые используются в модели задача/канал.
Основная идея подхода, основанного на параллелизме данных, заключается в том, что одна операция выполняется сразу над всеми элементами массива данных. Различные фрагменты такого массива обрабатываются на векторном процессоре или на разных процессорах параллельной машины. Распределением данных между процессорами занимается программа. Векторизация или распараллеливание в этом случае чаще всего выполняется уже на этапе компиляции — перевода исходного текста программы в машинные команды. Роль программиста в этом случае обычно сводится к заданию опций векторной или параллельной оптимизации компилятору, директив параллельной компиляции, использованию специализированных языков для параллельных вычислений. Наиболее распространенными языками для параллельных вычислений являются Высокопроизводительный ФОРТРАН (High Performance FORTRAN) и параллельные версии языка C (это, например, C*).
Более детальное описание рассматриваемого подхода к распараллеливанию содержит указание на следующие его основные особенности:
Обработкой данных управляет одна программа;
Пространство имен является глобальным, то есть для программиста существует одна единственная память, а детали структуры данных, доступа к памяти и межпроцессорного обмена данными от него скрыты;
Слабая синхронизация вычислений на параллельных процессорах, то есть выполнение команд на разных процессорах происходит, как правило, независимо и только лишь иногда производится согласование выполнения циклов или других программных конструкций — их синхронизация. Каждый процессор выполняет один и тот же фрагмент программы, но нет гарантии, что в заданный момент времени на всех процессорах выполняется одна и та же машинная команда;
Параллельные операции над элементами массива выполняются одновременно на всех доступных данной программе процессорах.
Видим, таким образом, что в рамках данного подхода от программиста не требуется больших усилий по векторизации или распараллеливанию вычислений. Даже при программировании сложных вычислительных алгоритмов можно использовать библиотеки подпрограмм, специально разработанных с учетом конкретной архитектуры компьютера и оптимизированных для этой архитектуры.
Подход, основанный на параллелизме данных, базируется на использовании при разработке программ базового набора операций:
операции управления данными;
операции над массивами в целом и их фрагментами;
операции, связанные с пересылкой данных.
Параллелизм любого рода требует одновременной работы, по крайней мере, двух устройств. Такими устройствами могут быть: арифметико-логические устройства (АЛУ), устройства управления (УУ). В ЭВМ классической архитектуры УУ и АЛУ образуют процессор. Увеличение числа процессоров или числа АЛУ в каждом из них приводит к соответствующему росту параллелизма. Наличие в ЭВМ нескольких процессоров означает, что одновременно (параллельно) могут выполняться несколько программ или несколько фрагментов одной программы. Работа нескольких АЛУ под управлением одного УУ означает, что множество данных может обрабатываться параллельно по одной программе. В соответствии с этим описание структур параллельных систем можно представить в виде упорядоченной тройки:
где k — количество устройств управления, т.е. наибольшее количество независимо и одновременно выполняемых программ в системе;
d — количество АЛУ, приходящихся на одно устройство управления;
w — количество разрядов, содержимое которых обрабатывается одновременно (параллельно) одним арифметико-логическим устройством.
Другая форма распараллеливания — конвейеризация, также требует наличия нескольких ЦП или АЛУ. В то время, как множество данных обрабатывается на одном устройстве, другое множество данных может обрабатываться на следующем устройстве и т.д., при этом в процессе обработки возникает поток данных от одного устройства (ЦП или АЛУ) к следующему. В течение всего процесса над одним множеством данных выполняется одно за другим n действий. Одновременно в конвейере на разных стадиях обработки могут находиться от 1 до n данных.
Параллелизм и конвейеризацию можно рассматривать на трех различных уровнях, представленных в таблице. Шесть основных форм параллелизма, в широком смысле этого слова, позволяют построить схему классификации, в рамках которой можно описать разнообразие высокопроизводительных вычислительных систем и отразить их эволюцию.
Классификация МВС по типу распараллеливания