Меню

Реверсивное управление двигателем постоянного тока схема

Реверс двигателя постоянного тока схемы.

В статье «Регуляторы оборотов электродвигателей » речь шла о регулировке оборотов коллекторных двигателей электроинструментов. Нередко возникает и другая задача: реверс двигателя постоянного тока, т.е. требуется обеспечить его вращение в одну и другую стороны. Это может понадобиться, например, для привода ворот в гараже или коттедже, в различных моделях и пр.

Проще всего такая задача с реверсом решается с помощью мостовой схемы, которая в общем виде представлена на рис.1 .
Схема реверса состоит из четырех ключей, двигателя и источника питания. Когда все ключи разомкнуты ( рис.1а ), ток через двигатель не течет. При коммутации первого и четвертого ключа ток через двигатель Iд течет слева направо ( рис.1б ), и двигатель вращается в одном направлении. А при коммутации второго и третьего ключей — течет справа налево ( рис.1в ), и двигатель вращается в обратном направлении.
Понятно, что руками коммутировать для реверса четыре переключателя неудобно, поэтому вместо ключей используем транзисторы ( рис.2 ).
Транзисторы могут быть разной проводимости, полевыми или биполярными. Работают они в ключевом режиме.
Обратно включенные диоды VD1. VD4 защищают транзисторы от выхода из строя, так как в момент выключения электродвигателя возникает достаточно большая ЭДС самоиндукции.
Силовая часть устройства реверса на биполярных транзисторах приведена на рис.3 .
Она состоит из четырех силовых и двух управляющих транзисторов; резисторов, ограничивающих базовые токи; шунтирующих диодов и гальванической развязки в виде двух оптопар.
Питание моста происходит от блока питания, подающего постоянное напряжение +50 В относительно земли. В cостоянии покоя на оба канала (А и Б) подается 0 В. Все транзисторы закрыты, на концах обмоток потенциал 0 В. Вал двигателя не вращается.
Для вращения двигателя в одну сторону на канал А подается постоянное напряжение +5 В или ШИМ-сигнал, на канал Б — 0 В. Открывается оптрон VU1, следом управляющий VТ5; при этом VТ6 закрыт.
Через резистор R2 протекает ток, открывающий силовые VТ1 и VТ4, а VТ2 и VТЗ закрыты.
Таким образом, на конце обмотки Я1 потенциал составляет +50 В, на конце обмотки Я2 — 0 В. Вал двигателя вращается (например, по часовой стрелке).
Чтобы включить реверс двигателя, на канал Б подается напряжение +5 В (ШИМ-сигнал), на канал А — 0 В. Управляющий VТ6 открыт, VТ5 — закрыт. Через резистор R4 в цепи коллектора VТ6 протекает ток, открывающий VТ2 и VТ3, а VТ1 и VТ4 закрыты. На конце обмотки Я1 потенциал составляет 0 В, на конце обмотки Я2 — +50 В. Вал двигателя вращается против часовой стрелки.
В случае подачи полoжительного напряжения на оба канала (А и Б) произойдет короткое замыкание, поэтому такой режим предотвращается управляющей частью устройства.
Реверс двигателя постоянного тока можно выполнить и на МОП-транзисторах ( рис.4 ). На входе схемы реверса последовательно установлены два инвертора так, что выход одного одновременно является входом другого. При этом сигнал управления (высокий или низкий логический уровень) на входе DD1.1 инвертируется и подается на вход DD1.2.
Выходы инверторов управляют полевыми транзисторами. При высоком уровне на входе, на выходе DD1.1 — низкий уровень, а на выходе DD1.2. — высокий. Благодаря этому VТ2 и VТЗ открыты и пропускают ток от отрицательного к положительному полюсу источника питания. Двигатель М1 вращается против часовой стрелки.
Если на вход схемы реверса подать низкий уровень, на выходе DD1.1 появится высокий уровень и откроются VT1 и VТ4, замыкая другую диагональ моста. Теперь ток потечет в другую сторону, и двигатель изменит направление вращения. Для управления устройством для реверса необходим логический сигнал МОП-уровня (0/+12 В).

Читайте также:  Автомобиль газ 2705 для характеристика

Устройство для реверса испытывалось с электродвигателем автомобильного вентилятора. Мощные МОП-транзисторы (для КП74ЗБ напряжение сток-затвор составляет 80 В. максимальный ток стока — 4,9 А) обеспечивают запас по мощности и по напряжению.
Сопротивление открытого канала составляет 0,3.. .0,5 Ом. Для повышения эффективности VT1. . .VТ4 устанавливаются на теплоотводы.
Напряжение питания зависит от типа применяемого электродвигателя М1. Если его напряжение питания превышает 15 В, следует предусмотреть в схеме дополнительный стабилизатор для питания микросхемы DD1.
Вместо К561ЛА7 можно применить другую микросхему серии 561, если ее элементы обеспечивают инвертирование сигнала (К561ЛЕ5, К561ЛН2).
Другая схема управления реверсом, построенная на мощных комплементарных полевых транзисторах, показана на рис.5 .

РЕВЕРСИВНОЕ ШИМ-УПРАВЛЕНИЕ ЭД ПОСТОЯННОГО ТОКА С ПОМОЩЬЮ ПЕРЕМЕННОГО РЕЗИСТОРА

Приветствую всех читателей канала! Тема сегодняшней статьи – регулирование оборотов электродвигателя ( ЭД ) постоянного тока и задание направления его вращения. Особенность предлагаемого решения заключается в том, что и регулировка оборотов, и выбор направления вращения ЭД задаётся с помощью всего одного манипулятора – переменного резистора. На канале уже поднималась подобная тема в статье « Плавный пуск и бесконтактный реверс DC-электродвигателя » с применением силового H- моста на mosfet -транзисторах. В предлагаемой конструкции применён несколько другой подход.

ШИМ -управление электродвигателями ( ЭД ) постоянного тока обладает высоким КПД и широко применяется для плавного регулирования частоты вращения в одном и том же направлении. Но иногда требуется одной ручкой управления плавно изменять не только частоту, но и направление вращения вала ЭД . В предлагаемой схеме (рисунок ниже) для этого применено оригинальное решение.

Схема содержит задающий генератор ( 390 Гц ) DD1 ( CD4041BE ), два ждущих мультивибратора DD2 ( HEF4538BT ), длительность импульсов которых одновременно регулируется в разных направлениях резистором R2 , схемы ИЛИ ( DD3.3 ), длительность импульсов на выходе которой равна разности длительности импульсов на выходах DD2 , и RS -триггер ( DD3.2, DD3.1 ).

В среднем положении R2 импульсы на выходах 7 и 9 DD2 отсутствуют — оба постоянно в нулевом состоянии, поскольку времязадающие конденсаторы С3 и С4 выбраны так, что незадолго до генерации собственного импульса оба мультивибратора перезапускаются тактовыми импульсами. При этом выход DD3.4 также нулевой и ЭД не вращается.

Смещение R2 в ту или другую сторону приводит к появлению на выходе 7 или 9 , а значит и DD3.4 — VT2 – M1 , импульсов, длительность которых увеличивается от в среднем до 95% периода следования — в предельных положениях R2 . Таким образом осуществляется плавная регулировка частоты вращения.

Направлением вращения автоматически командует RS -триггер ( DD3.2, DD3.1 ), который перебрасывается из одного состояния в другое в зависимости оттого, на каком из выходов ( 7 или 9 ) DD2 в текущий момент имеются импульсы. В зависимости от состояния триггера реле K1 выполняет переполюсовку ЭД (M1) .

Печатная плата для схемы показана на рисунке ниже.

РЕВЕРС МОТОРА без «Н» моста и микросхем НА двух ДИОДАХ

Реверс — запуск мотора в обратном к текущему вращению направлении.

Реализовать вращение электродвигателя в разных направлениях можно разными способами.
Следует исходить из мощности электромотора который мы собираемся запустить для выбора типа и схемы электронных компонентов.

Если рассмотреть коротко, то реверс, практически любого электрического мотора сводится к переполюсовке направления тока подаваемого на клеммы электродвигателя (разумеется если мотор для этого предназначен).

К примеру, электрические двигатели от компьютерных кулеров с датчиком Холла не имеют возможности быть запущенными в обратную сторону, а бесколлекторные моторы переменного тока вполне могут крутится как в ту, так и в другую стороны при смене расположения конденсатора на вспомогательных обмотках.

Читайте также:  Чип тюнинг винд ру

Часто вижу довольно хитроумные схемы на силовых транзисторах и микросхемах так называемые «Н» мосты на полевых или биполярных транзисторах разного типа проводимости.

Мост Тильдена, хотя и зарекомендовал себя как практичное и надежное решение, не так уж прост и имеет рад недостатков таких к примеру как необходимость использования мощных транзисторов с большими радиаторами, а также схемы контроля тока входов, для предотвращения короткого замыкания в случае одновременной подачи на управляющие входы высокого уровня сигнала.

Хотя микросхем с уже встроенными Н мостами и контроллерами хватает, а в типовых решениях японских производителей , даже есть целый ряд готовых микросхем разной мощности, что делает сборку Н мостов из дискретных компонентов дилетантским занятием ради тренировки, забывать о простых и надежных решениях придуманных еще в эпоху СССР не стоит!

Ни одна микросхема не сравнится по простоте и по мощности со старым советским трёхпозиционным ключем способным коммутировать без радиаторов и дополнительного питания весьма «неприличные» мощности электродвигателей.

В ровень с этим Советским «монстром» можно поставить реле с токами коммутации не менее мощными чем упомянутый ключ.
Тут уже можно и кнопочки задействовать и управлять реле по проводочкам более тонким чем силовые кабели электромотора.

Не будем столь суровы к попыткам собрать схему «туды-сюды» вращателя, вдруг и в правду она понадобится для прозаичных и практичных целей, но давайте откинем всё лишнее и оставим лишь то без чего в этой схеме не обойтись : Источник питания, Мотор, Две кнопки (можно и одну) и схему для реверса питания без нулевого потребления.

Осталось соединить все это в одну цепь и наслаждаться эффектом просто и откровенно!

3 простые схемы реверса двигателя постоянного тока

Совсем недавно электродвигатели коммутировались при помощи всевозможных переключателей, рубильников, реле и прочей «механики». Сегодня же их серьезно потеснили электронные ключи, собранные на полупроводниках. Они долговечны, не требуют техобслуживания, позволяют управлять электромоторами при помощи микропроцессорных систем. Тем не менее, не стоит забывать и о старых добрых переключателях, которые в некоторых случаях все же предпочтительнее электроники. В этой статье мы рассмотрим 3 простые схемы управления двигателем постоянного тока при помощи обычных переключателей и даже кнопок.

С двумя кнопками

Этой схемой Интернет буквально завален. Ведь она позволяет запускать двигатель и управлять направлением его вращения всего двумя обычными кнопками! Нажал на одну – мотор крутится влево. Нажал на другую – вправо. Не нажал – все отключено.

Теоретически все верно. Для питания электродвигателя М1 используется переменный ток. Пока ни одна из кнопок не нажата, двигатель не вращается, поскольку он подключен к питанию через диоды D1, D2, соединенные встречно-последовательно.

Как только мы нажмем на одну из кнопок, один из диодов окажется закорочен, а второй начнет работать как однополупериодный выпрямитель, подавая на мотор выпрямленное напряжение. Полярность этого напряжения, а значит, и направление вращения двигателя, будут зависеть от того, какая из кнопок нажата.

На практике же такая конструкция имеет огромный недостаток. Мощность электромотора, питаемого таким «криво» выпрямленным напряжением, составит не более 40 % от его номинала. Если учесть то, что КПД самого мотора обычно составляет порядка 50%, то нам останется только погрустить.

Еще один существенный недостаток – отсутствие «защиты от дурака». Если нажать на обе кнопки одновременно, к электродвигателю будет приложено переменное напряжение, да еще и удвоенной амплитуды. Вполне очевидно, что после такой оплошности от мотора останутся ножки и частично рожки.

С двумя переключателями

Эта схема ненамного отличается от предыдущей, но лишена вышеперечисленных недостатков. А отличие заключается лишь с том, что вместо кнопок используются переключатели, а выпрямительные диоды исключены.

Читайте также:  Турбореактивный двигатель самолета схема

Устройство питается постоянным напряжением, как и положено электромотору, так что с КПД все в порядке. Пока ни один из переключателей не включен, выводы электромотора закорочены и подключены к одной из шин питания. Стоит нажать на любую из кнопок, один из выводов мотора будет подключен ко второй шине питания и его ротор завращается. В зависимости от того, какой из переключателей будет активирован, полярность питания, подаваемого на двигатель, а значит, и направление вращения ротора будут изменяться.

Если включить одновременно оба переключателя, то ничего страшного не произойдет, просто выводы мотора окажутся подключенными к другой шине питания, а разности потенциалов между ними не будет.

На схеме изображены переключатели, но, конечно, вполне подойдут и кнопки на переключение без фиксации. Если оснастить микродрель для сверления плат, скажем, двумя КМ1-1, разместив их на корпусе устройства, то управлять сверлом можно простым нажатием пальца на нужный переключатель.

На сдвоенном со средним положением

Если управление двумя кнопками все же неудобно, то можно воспользоваться конструкцией, в которой используется двухполюсной тумблер со средним положением. Подойдет, к примеру, П2Т-5.

Как видно из схемы, конструкция предельно проста. В среднем положении флажка тумблера S1 двигатель отключен от питания. При повороте флажка в ту или иную сторону, на обмотку электродвигателя будет подаваться напряжение той или иной полярности, обеспечивая вращение ротора в ту или другую сторону.

Тумблеры со средним положением бывают с фиксацией и без. В первом случае при повороте флажок «залипает» и его нужно отключать вручную. У тумблеров без фиксации флажок самостоятельно устанавливается в «нейтральное» положение после окончания воздействия на него.

На тумблере с автоматическим отключением

Предыдущая схема проста и удобна в управлении и ее, к примеру, можно использовать для управления моторами стеклоподъемников в автомобиле. Но для этого конструкцию придется немного доработать. Ведь управляя стеклоподъемником вручную, сложно определить, что стекло уже полностью открылось/закрылось и пора останавливать мотор. Взглянем на схему ниже.

Перед нами все та же конструкция с тумблером, но она дополнена двумя диодами и двумя концевыми выключателями. Предположим, наш мотор управляет приводом стеклоподъемника автомобиля. Стекло полуоткрыто, концевые выключатели S2 и S1, расположенные в верхней и нижней части окна, замкнуты, диоды D1 и D2 закорочены.

Переводим флажок S1 в одно из положений. К примеру, в верхнее по схеме. На мотор M1 начинает поступать напряжение – «плюс» на верхний вывод, «минус» на нижний. Стекло поднимается и, в конце концов, нажимает на толкатель концевика S2, заставляя его сработать. Контакты S2 размыкаются, и в работу включается диод D1. Поскольку он включен в обратном направлении, то тут же запирается, запрещая работу двигателя. Теперь сколько бы мы ни давили на флажок, мотор не запустится и не даст разнести стеклоподъемный механизм.

Переводим флажок S1 в нижнее по схеме положение. Теперь «плюс» подается на нижний по схеме вывод обмотки мотора и диод D1 оказывается включенным в прямом направлении. Он свободно пропускает ток, несмотря на то, что S2 разомкнут и разрешает работу электромотора, который опускает стекло. Как только стекло будет полностью опущено, сработает S2, останавливая М1. Ниже опустить его мы не сможем, но сможем поднять, поскольку опускаясь, стекло отпустило S2 и он снова замкнут.

Вот вроде и все. Схемы, конечно, исключительно просты и для тех, кто более-менее знаком с электроникой, не являются откровением. Но тех, кто только начал познавать электромир, эти схемы, возможно, чему-нибудь научат.

Adblock
detector