Расход топлива, л/100 км (для Octavia A5) — город — трасса — смешан.
10.1 5.9 7.4
Расход масла, гр./1000 км
до 500
Масло в двигатель
0W-30 0W-40 5W-30 5W-40
Сколько масла в двигателе, л
4.6
Замена масла проводится, км
15000 (лучше 7500)
Рабочая температура двигателя, град.
—
Ресурс двигателя, тыс. км — по данным завода — на практике
— 250-300
Тюнинг, л.с. — потенциал — без потери ресурса
350+
250
Двигатель устанавливался
VW Passat B6 VW Passat CC Audi A3 Audi A4 Audi A5 Skoda Octavia Skoda Superb SEAT Altea SEAT Leon SEAT Toledo
Надежность, проблемы и ремонт двигателей 1.8 TSI
Двигатель BZB был выпущен в июне 2007 года и относился он к серии ЕА888, к первому поколению этих моторов. Но выпускалось еще нулевое поколение, представителем которого был двигатель Фольксваген BYT, он находился в производстве с января по июнь. Оба эти мотора пришли на смену 2.0 FSI и были спроектированы практически с нуля. Они используют закрытый чугунный блок цилиндров с двумя балансирными валами (высота блока 220 мм), со стальным коленвалом с 8-ю противовесами и с ходом поршня 84.2 мм, новые легкие поршни (высота 29.8 мм), шатуны длинной 148 мм, степень сжатия снижена под турбо до 9.6.
Этот блок накрыт алюминиевой 16-клапанной головкой с двумя распредвалами. Диаметры клапанов: впуск 34 мм, выпуск 28 мм, диаметр стержня 6 мм. На впускном валу установлен фазовращатель. Распредвалы вращает цепь ГРМ, которая заявлена как необслуживаемая. Здесь использован прямой впрыск топлива, и двигатель работает на гомогенной смеси. На впуске применен коллектор с переменной геометрией и установлены вихревые заслонки. В отличие от 2.0 TFSI 113-й серии, здесь используются новые форсунки с 6-ю распылителями.
Дует в 1.8 TSI турбина KKK K03, которая выполнена вместе с коллектором, а максимальное давление наддува 0.6 бар. Двигателями BZB и BYT управляет мозг Bosch Motronic MED 17.5. Оба эти мотора соответствуют экологическому классу Евро-4.
Двигатель Фольксваген BZB отличается от BYT немного измененной клапанной крышкой, системой вентиляции картера, чуть более низким давлением масла, немного улучшенными форсунками, другой прокладкой ГБЦ. Характеристики этих моторов не отличаются: мощность 160 л.с. при 5000-6200 об/мин, крутящий момент 250 Нм при 1500-4200 об/мин.
Кроме BZB к первому поколению 1.8 TSI относятся двигатели Ауди CABA, CABB и CABD, которые отличались регулируемым масляным насосом. Двигатели CABB и CABD практически ничем не отличаются от BZB, тогда как CABA выглядит странно — 1.8 турбо и всего 120 лошадиных сил. Показатели как у обычного атмосферника, но турбина позволяет рано получить ровную полку крутящего момента, а его количество существенно больше чем у атмосферника. Технически CABA полная копия CABB и CABD.
Вместе с этими движками выпускался и родственный 2.0 TSI 1-го поколения, максимально близкий к вышеописанным двигателям.
Выпускали первое поколение 1.8 TSI до 2010 года, но уже в 2008 году начали выпускать ЕА888 2-го поколения.
Недостатки и проблемы двигателей BZB (1.8 TSI 1 поколение )
1. Шумы, металлический звук. К сожалению, у Volkswagen BZB довольно часто растягивается цепь ГРМ и происходит это примерно после 100 тыс. км. Если ничего не предпринимать, то возрастает риск перескока цепи с последующим загибом клапанов. 2. Перескок цепи ГРМ. Проблема встречается на автомобилях, которые оставили на склоне передом вверх. Перескок происходит при старте. Неисправность решили в 2010 году, заменив натяжитель и цепь ГРМ, но, несмотря на замену, болезнь все равно может проявляться, хоть и намного реже. 3. Плавают обороты. Зачастую дело в закоксованных клапанах, а причина этого явления сам непосредственный впрыск топлива. Нужно проверять и чистить. Еще одна из причин это вихревые заслонки, которые со временем загаживаются, ломаются, ось ломается и т.д. Обычно их чистят или меняют коллектор на рабочий или совсем отключают.
Также была проблема с маслоотделителем, что могло вызывать повышенный расход масла. Его меняли на такой 06H103495AD. Кроме того, каждые 90 тыс. км предписано менять свечи, масло лучше менять в 2 раза чаще регламента, и использовать только высококачественные рабочие жидкости. Несмотря на вышеописанные проблемы, это не самые плохие двигатели из всех Фольксваген 1.8 TSI, их ресурс превышает 250-300 тыс. км, при очень адекватном обслуживании.
Тюнинг двигателей 1.8 TSI BZB
Чип-тюнинг
Прошивка блока управления (так называемый Stage 1) позволяет получить до 220 л.с. без проблем и около 340 Нм крутящего момента. Точно такие же цифры можно получить обычной прошивкой 120-сильного двигателя CABA. С фронтальным интеркулером, холодным впуском, даунпайпом и прошивкой Stage 2, можно замахнуться на 240-250 л.с. и получить до 380 Нм момента. Вы можете пойти дальше и сделать Stage 3. Для этого продаются турбо киты APR на базе турбины К04 и компонентов от Audi S3 (интеркулер, форсунки, катушки, турбина К04), а так же впуска APR, выхлопа на 76 мм трубе без катализаторов и с соответствующей настройкой. Это позволит получить до 350 л.с. (300-320 л.с. без проблем), но турболаг значительно увеличиться и на низких оборотах ваш BZB будет тянуть не так хорошо, как на стандартной К03.
Проблемы и болячки моторов VW, Audi, Skoda 1,8 TSI и 2,0 TSI (EA888)
Сегодня уже любой человек, выбирающий себе на вторичке автомобиль марки Audi, Volkswagen или Skoda с бензиновым турбомотором слышал, что двигатели 1.8 и 2.0 TSI известны повышенным масляным аппетитом. И эти моторы страдают от этой своей особенности. Также наверняка такой человек знает, что есть решение этой проблемы. Да, есть вариант с заменой поршневой на модернизированную. В этой статье мы разберемся в природе проблемы «масложора», обсудим возможные варианты решения этой проблемы, рассмотрим другие «болячки» моторов 1,8 TSI и 2,0 TSI и сориентируемся по стоимости контрактных моторов.
В 2017 году серии силовых агрегатов EA888 стукнуло 10 лет. Изначально эта линейка, разработанная для автомобилей Audi, стартовала именно на машинах с четырьмя кольцами на логотипе. Но довольно быстро EA888 распространились на весь марочный и модельный ряд концерна VAG. Как это обычно бывает у огромного немецкого концерна, у казалось бы одинаковых моторов очень много модификаций. Хотя исполнений по рабочему объему предусмотрено всего два: 1.8 и 2.0. Аббревиатура TSI и TFSI по сути ничем не отличается. Последний буквенный вариант используется исключительно на автомобилях Audi.
Конструктивно силовые агрегаты семейства EA888 неразрывно связаны с непосредственным впрыском топлива и турбонаддувом. Безнаддувных «атмосферных» вариантов этих моторов не существует, равно как и версий с распределенным впрыском. Но стоит заметить, что третье поколение моторов EA888 обзавелось комбинированным впрыском: топливо впрыскивается не только через «непосредственные» форсунки, но и через распределенные, которые «по-старинке» впрыскивают топливо во впускной коллектор прямо перед впускными клапанами. Но эта диковинная версия EA888 используется только на машинах, предназначенных для продажи в Калифорнии – этот штат известен своими строгими эко-нормами.
Они заменили в производстве почтенное семейство ЕА113, которое в основном известно по «пятиклапанным» моторам 1.8T, но последние поколения которого гордо носили аббревиатуру TFSI, и также были оснащены непосредственным впрыском и турбонаддувом. Но смена поколений явно назрела — моторы были из 90-х.
Моторы ЕА888 пришли на смену старым агрегатам семейства ЕА113. Эти агрегаты, рожденные в 1990-х, запомнились по пятиклапанной ГБЦ (на каждый цилиндр тут приходится по пять клапанов) и дорогим в обслуживании ременным приводом ГРМ. Изначально двигатели ЕА113 имели распределенный впрыск, но позже перешли на непосредственный и в связи с этим получили аббревиатуру TFSI.
С появлением агрегатов ЕА888 многие поначалу вздохнули от облегчения: стандартные четырехклапанные ГБЦ и цепной привод ГРМ, цепи в приводе балансирных валов и маслонасоса сулили меньше проблем с поломками и обслуживанием. Но не тут-то было! Никто и подумать не мог, что старания инженеров, направленные на снижение расхода топлива, выльются в повышенный расход моторного масла. Впрочем, «масложор» пусть и широко известная, но далеко не единственная «болячка» ЕА888. Проблемы доставляли и недолговечные цепи, и фазовращатели впускного и выпускного распредвалов, привод механического ТНВД от кулачка распредвала, помпа системы охлаждения, собранная в одном корпусе с термостатом. На двигателях EA888 хандрили и турбокомпрессоры. Были проблемы с запуском зимой. Доставляла неприятности система вентиляции картера. И лишь отлитый из чугуна блок подавал надежды на неубиваемость и возможность расточки при необходимости. Теперь обо всем по порядку.
Нездоровый масляный аппетит
У производителя и инженеров ушло семь лет на то, чтобы признать проблему масложора моторов EA888 и решить ее. Впрочем, о решении можно еще поспорить: масляный аппетит проявляется и на самых свежих ревизиях двигателей EA888, а цепи продолжат растягиваться. В чем же заключается суть проблемы?
Вообще, нельзя винить во всех этих проблемах абсолютно все версии моторов EA888. Самая первая модификация, известная под индексом BZB, была не так уж плоха и капризна. Всего через год после запуска ее сменили «усовершенствованные» двигатели CDAB, которые и познакомили людей с проблемой повышенного угара масла.
Поршни мотора BZB серии 06H107065BK (код на поршне AE) имели умеренную склонность к масляному аппетиту. Разве что приличный перегрев мог привести к «осложнениям» в виде расхода в литр на тысячу и больше. Слив масла с малосъемного кольца был выполнен прорезями, которые очень сложно было закоксовать. Высота компрессионных колец 1.2 и 1.5 мм, маслосъемного 2 мм, вполне «классические» показатели. Диаметр поршневого пальца составлял 21 мм. Казалось бы, все должно быть хорошо.
Но уже поршни моторов CDAB 06H107065BS серии AF были «усовершенствованы». Компрессионные кольца стали тоньше, 1,0 и 1,2 мм, а маслосъемные — 1,5 мм. Слив масла с маслосъемного кольца сделали через небольшие отверстия. Предполагалось получить до 5% выигрыша в расходе топлива за счет снижения трения поршневой группы и использования маловязкого масла. На деле уже в течении года-полутора аппетит моторов рос как на дрожжах, умирали катализаторы и сказки инженеров по гарантии о том, что все турбомоторы расходуют масло, уже не помогали. Расходуют-то расходуют, но не по литру же на 1000 километров… Самым настойчивым завод рекомендовал менять поршни на прошлую ревизию, от моторов BZB. Это и правда решало проблему при отсутствии износа поршневой группы.
Затем в производстве поршни сменили на новые – с номером 06H107065CP, серии BM. Их начали устанавливать на моторы, начиная с номера 221245. Поршни отличались толщиной колец: 1,0, 1,2 и 2,0 мм. Слив масла опять же отверстиями, но чуть большего диаметра. Изменилась и толщина поршневого пальца, теперь он стал диаметром 23 мм.
С мотора 264264 поршни снова поменяли, новые с кодом 06H107065DF серия BN имели компрессионные кольца по 1,2 и 1,2 мм и маслосъемное 2,0 мм. Слив, опять же, отверстиями.
Думаете, масляный аппетит пропал? О нет. Просто теперь он стал появляться чуть позже, давая время «поиграть» с типом масла и интервалами замены. Но все равно «масложор» для турбированных Volkswagen, Audi и Skoda оставался неизбежным. А заменить поршни на вполне себе работающие от BZB стало невозможно. Точнее, приходилось менять еще и шатуны, а это примерно двукратное увеличение стоимости запчастей. Шутка в том, что тем, у кого все еще стояли поршни серии AF, тоже меняли шатуны и поршни, но на серию BN… Масложор ждал их в скором будущем.
В конце концов в 2014 году в серию пошли поршни серии 06H107065DL серии BS с толщиной колец 1,2, 1,2 и 2,0 мм. Но маслосъемное кольцо тут «классическое» наборное, а не более «прогрессивное» коробчатое, как было у всех прошлых ревизий поршней.
Что делать с машиной из «проблемной» группы?
Оригинальные поршни для VAG производила компания Mahle. Но она не единственный производитель поршневой группы для этих моторов. Компания Kolbenschmidt производит неплохую замену поршням AE — серию KS40251600, также с прорезями слива масла.
В последних ревизиях этого поршня маслосъемное кольцо наборное, обратите на это внимание. Существует и версия под 23-миллиметровый поршневый палец KS 40 761 600, хотя встречается она реже. Если поршни старые, то нужны еще кольца Mahle 02814N0 или Mahle 03319N0.
Таким образом, если ваш мотор имеет поршневой палец 21 мм, то лучший путь решения проблемы — это установка поршней KS40251600 или AE, если получится найти их по приемлемой цене. Обычно она начинается от 11 тысяч рублей, но возможны варианты.
Если мотор имеет поршневые пальцы диаметром 23 мм, то придется либо ограничиться поршнями BS, либо искать весьма редкие KS 40 761 600.
Если поршень прогорел из-за залегания компрессионных колец, то придется точить блок, благо он чугунный, и ремонтные размеры у поршневой группы есть. Правда, поршни 40761610 и 40761620 – первого и второго ремонтного размера соответственно – существенно дороже базовых. Так что гильзование чугунного блока – весьма распространенный выход из ситуации. Можно даже обойтись б/у поршнями с доработкой, благо поршни сами по себе крепкие. Да и «бесхозных» поршней в природе много: меняют их массово.
Другие проблемы моторовEA888
Вроде, с поршнями все понятно. Но, к сожалению, конструкция этой серии двигателей имеет еще множество слабых мест: в их числе привод ГРМ, узел помпы и термостата, неудачная конструкция системы вентиляции картера, маслонасоса и балансирных валов. Даже впускной коллектор этого мотора имеет типовую неисправность. Вишенкой на торте безобразий можно смело считать ограниченный ресурс ТНВД, разрушение его привода, капризы системы непосредственного впрыска в целом, особенности зашлаковывания клапанов на моторах TSI и сложности с их диагностикой и ремонтом. Последнее осложняется конструктивными особенностями ряда изнашиваемых узлов — например, регулятора давления в сборе с топливной рампой. Итак, теперь подробнее.
Капризная цепь
Цепной привод ГРМ считается на Руси особо надежным, ведь ходили же моторы Жигулей десятки лет! Натяжители, правда, удлиняли, но цепи менять не приходилось до второй-третьей «капиталки». И потому решение компании VW поставить цепь вместо ремня в новой серии моторов всячески приветствовалось. Сюрприз в виде загнутых клапанов и перескоков цепей при пробегах менее 50 тысяч километров стал для многих владельцев шоком.
Не то чтобы такого не случалось ранее: у Mercedes-Benz буквально за пару лет до того состоялся скандал на почве ненадежной цепи мотора М272, да и у GM и Opel цепь на атмосферных моторах упорно не хотела работать вечно. Но в силу недостатка информации и явного замалчивания проблем гарантийными отделами и отраслевыми СМИ владельцы узнавали о проблеме только тогда, когда мотор не заводился. Сюрприз получился более чем неприятный для абсолютного большинства. Оказалось, что никто не застрахован от поломки задолго до ожидаемого срока замены элементов ГРМ. Поиск причин выявил сразу несколько недоработок.
В первую очередь под подозрение попал гидронатяжитель. Его конструкция предусматривала наличие «трещотки» — механизма обратного хода, но выполнен он был недостаточно прочным, отчего в ряде ситуаций натяжитель сжимался. Причем ситуации могли быть любыми: прокручивание двигателя в обратном направлении при парковке на передаче, при работе в сервисе, из-за рывков тяги во время движения, при старте холодного мотора и тому подобное.
Цепь могла даже не иметь износа, но перескакивала при этом легко. Клапаны у мотора загибаются всегда и имеют конструкцию, при которой головка клапана легко отрывается, что часто приводит к «сталинграду». Впрочем, обычный загиб клапанов по цене немногим уступает полной переборке, потому что ГБЦ часто оказывалась поврежденной до уровня, когда требуется капремонт с восстановлением седел и выпрессовкой направляющих.
Гидронатяжитель сначала заменили на серию 06K109467K с более надежным механизмом обратного хода, а затем – на 06K109467P со встроенным обратным клапаном, который исключал завоздушивание. Оказалось, что маловязкие масла могли полностью стекать, и время срабатывания гидронатяжителя увеличивалось до десятка секунд. А это значительно повышало шансы проскока цепи.
К сожалению, натяжителем проблемы не ограничивались. Вторым важным источником проблем стали балансирные валы.
Вал и нежный фильтр
Балансирные валы этого двигателя находятся в блоке, и в действие их приводит цепь. Беда пришла, откуда не ждали: в блоках подшипников скольжения применили сетчатые фильтры с корпусом из пластика. Поскольку рабочая температура двигателя выше сотни градусов, а температура масла в картере и того выше, пластик быстро терял рабочие характеристики, крошился, и начинались приключения. Маленькие куски пластика постепенно скапливались в миниатюрных фильтрах, а поскольку их диаметр не больше 8 мм, то забивались они быстро.
У любителей покрутить мотор на холодную в систему смазки поступали еще и куски пластика из картера. При высокой рабочей температуре пластиковые детали механизма ГРМ, такие как успокоители, а также многочисленные резиновые трубки системы вентиляции картера тоже деградировали и разрушались, отравляя своими остатками масло.
Учитывая рекомендуемые интервалы замены в 15 тысяч и не всегда бережную эксплуатацию, это приводило к неприятным последствиям. Забитый мини-фильтр балансирных валов переставал пропускать масло, в результате чего балансирный вал перегревался, и фильтр расплавлялся окончательно. Если вал заклинивало, то двигатель или вставал, или обрывал привод балансирных валов. Все это обычно сопровождалась поломкой одной из звезд. Нагрузки на привод ГРМ получались высокие, и часто финальным аккордом становился проскок цепи. Особенно если натяжитель к тому времени тоже уже успевал ослабнуть.
Опоры распредвалов
Еще одна неприятность таилась в опорах распределительных валов. В передней опоре распредвала номер 06H103144J применили обратный клапан. Нужен он для того, чтобы обеспечить скорейшую подачу масла при холодном старте двигателя и быстрый выход фазорегулятора на рабочий режим. И вот эта простейшая деталь из стального шарика, пружины и пластикового корпуса с сетчатым фильтром подвела. Остатки пластика рвали фильтр, и мусор начинал «гулять» по системе, попадая в магистраль смазки распредвала и в фазовращатель. Последний этого обычно пережить не мог. Разумеется, цепь при этом могла проскочить или даже оборваться с повреждением клапанов и ГБЦ.
С этим дефектом можно было встретиться даже при небольшом пробеге, порой хватало 40-60 тысяч километров городских поездок. Выход был найден: в продаже появились новые сеточки, а корпус клапана в новых опорах стал металлическим.
Горячий немецкий парень
Из-за высокой рабочей температуры страдали опоры распредвалов, натяжители ГРМ, а следом – и цепь, так как ее износ во многом зависит от частоты колебаний, состояния поверхности натяжителя и качества смазки. При повышении температуры масла оно хуже смазывает детали, быстрее стекает, а пластик становится твердым, вследствие чего хуже гасит вибрации и быстрее изнашивается. Слишком высокая рабочая температура двигателя до сих пор остается без изменений, но тюнинговые продукты умеют исправлять этот недостаток: меняют и температуру срабатывания термостата, и температуру включения вентиляторов.
Высокая рабочая температура сказывается и на работе компонентов системы охлаждения. У этой серии двигателей конструкция термостата и помпы выполнена очень оригинально: помпа расположена в едином блоке с термостатом и приводится ремнем от одного из балансирных валов. причем весь узел, за исключением силового кронштейна подшипника, выполнен из пластика. Корпус насоса не слишком прочный, со временем его «ведет». Вдобавок ранние версии узла имели неудачное уплотнение, которое разбухало, что приводило к появлению трещин.
Срок эксплуатации модуля помпа-термостат оказался менее пяти лет, а при работе двигателя в условиях крупных городов и пробок — даже менее трех. А поскольку мотор очень термонагружен, любая утечка охлаждающей жидкости может привести к фатальным последствиям как для поршневой группы, так и для остального «железа» мотора. Сейчас цена модуля не очень велика, но лет пять назад ситуация была куда острее, да и ресурс был ниже.
Ремонт тоже непрост: подобраться к насосу очень сложно, сверху он прикрыт впускным коллектором, снизу доступ тоже ограничен. Зато на ремень снизу легко попадает вода, что может привести к его выходу из строя, поэтому по лужам надо ездить очень аккуратно. Масла ремень не особенно боится, но бывали случаи его разрушения по неизвестным причинам.
Маслонасос и его привод тоже могут доставить немало хлопот. Насос расположен в картере двигателя, и на первых двух ревизиях мотора он был простым, с байпасным клапаном. Для третьего поколения ЕА888 (Gen3) разработали двухступенчатую систему регулирования. Но, если честно, даже простые версии насоса были не идеальны. Сетка маслоприемника иногда забивалась, цепь зимой, бывало, рвалась, редукционный клапан изредка западал с понятными последствиями для мотора.
С введением системы регулирования участились случаи проворота вкладышей, которые связывают в том числе с системой регулирования. Впрочем, у новых моторов есть свои особенности. Например, шейки коленвала тут меньшего диаметра, и большая склонность к утечкам масла из-за перегрева или ударов из-за облегченной конструкции картера не всегда обусловлена плохой работой маслонасоса.
Течи также случаются и по вине трубки охлаждения турбины. При пробегах более 50 тысяч километров часто нарастают вибрации последней из-за осаждения нагара и грязи на крыльчатках, особенно холодной. Даже при полностью исправной турбине течи вполне возможны: конструкция ее не слишком удачная. Тут можно только рекомендовать регулярно проверять трубку или заменить ее на гибкую тюнинговую подводку.
И напоследок…
Впускной коллектор, который укрывает помпу от глаз владельца, скрывает в себе собственную проблему. Вихревые заслонки имеют групповой привод от сервомотора, и при загрязнении коллектора вал заслонок расстыковывается в одной или нескольких точках. Чаще всего – в зоне соединения с приводом. Штатный вариант ремонта – замена коллектора, что обходится недешево, но можно встретить и ремонтные заслонки и сервоприводы.
Вентиляция картера на EA888 – та еще проблема. Причем она же является «жупелом» для тех, кто столкнулся с расходом масла на ранней стадии. В теории конструкция системы весьма прогрессивна: с маслоловушкой и PCV-клапаном она обеспечивает всережимную работу для двигателя с наддувом и теоретически большой срок эксплуатации масла. На практике же случаются следующие неприятности.
Умирающий клапан PCV приводит к повышению давления в картере и выдавливанию одного из сальников мотора, причем самым неприятным вариантом является протечка заднего сальника коленчатого вала. Задний сальник коленвала меняли в связи с течами и отслоениями резины, новая ревизия 06H103171F выдерживает давление намного лучше и не расслаивается, но остальные сальники текут легко.
А вот потеки масла на верхнем патрубке турбины и в интеркулере – это, скорее, просчет с изначальным рабочим давлением клапана PCV. Система маслоотделителя не успевала фильтровать масло, отчего оно попадало на впуск, в интеркулер и на клапаны. Когда VW столкнулся с тем, что на впускных клапанах нарастает «шуба» из нагара, который затрудняет газообмен в моторе и приводит к подклиниванию клапанов, повреждению седел, а порой и поршневых колец и даже цилиндра, инженеры концерна увеличили рабочее давление в картере мотора. Теперь сальники стали течь, хотя расход масла через вентиляцию значительно упал. «Шубообразование» тоже идет не так интенсивно, серьезные отклонения в работе мотора появляются обычно после окончания гарантии. Выход? Тут может помочь промывка впуска на сервисе.
Вместо заключения
Надеюсь, теперь понятно, почему фраза «все моторы с турбиной расходуют масло» от владельца VW с 1,8 TSI/2,0 TSI звучит немного фальшиво, а подобные заявления у дилера говорят о том, что менеджер по гарантии не хочет заморачиваться с ремонтом до окончания гарантийного срока. Многое из вышеперечисленного можно исправить, если взяться за дело правильно и вовремя.
Что могло бы спасти репутацию моторов ЕА888? Скорее всего, стоит понизить температуру, заменить ряд узлов и использовать другие материалы. И значительно сократить интервалы техобслуживания.
Стоимость контрактного мотора
Цены на контрактные моторы семейства ЕА888 1,8 TSI и 2,0 TSI варьируются от 2500 до 4300 бел.рублей. В продаже их не так уж и много – спрос на эти моторы очень хороший.