Расход масла при закалке
15.03.2009
Закалочные масла и термическая обработка металлов
Закалка – это вид термической обработки изделий из металлов и сплавов для придания им высокой твердости, прочности, износостойкости
Виды термической обработки металлов
Отжиг
Назначение процесса
Уменьшение твердости стали для повышения обрабатываемости; улучшение структуры; снятие внутренних напряжений; достижение большей однородности металла.
Описание процесса
Медленный нагрев до 740-850 0С *, выдержка, медленное охлаждение
Нормализация
Назначение процесса
Сталь приобретает повышенные значения прочности, твердости и ударной вязкости и более низкую пластичность по сравнению с отожженной.
Описание процесса
Нагрев до температуры выше критической* (температуры изменения типа кристаллической решетки), выдержка, охлаждение на спокойном воздухе.
Закалка
Назначение процесса
Достижение высокой твердости, прочности, и, следовательно, износостойкости стали.Образуется неравновесная структура, требует последующего отпуска.
Описание процесса
Нагрев до температуры выше критической * (температуры изменения типа кристаллической решетки), выдержка, быстрое охлаждение.
Отпуск
Назначение процесса
Получение более высокой пластичности и уменьшение хрупкости мартенситной структуры при сохранении уровня прочности; освобождение от напряжений
Описание процесса
Нагрев от 150-260 0С до 370-650 0С *, выдержка, медленное охлаждение на воздухе.
Примечание: * Температура зависит от типа обрабатываемого металла
Влияние масла при термической обработке металлов
Важны:
При закалке в масле на изделии образуется значительно меньше тепловых трещин, чем при закалке в воде.
Холодная закалка (30-80 0 С):
Горячая закалка(165-220 0 С):
Закалка деталей высокой точности (например, деталей приводного механизма автомобилей), где необходимо исключить опасность искривления поверхности.
Вакуумная
Закалка инструментальной, подшипниковой, жаропрочной, быстрорежущей стали.
Это масла, используемые в качестве рабочей среды в процессах термической обработки металлов. Позволяют получать стальные изделия с заданными значениями твердости, требуемой структуры и чистоты поверхности.
Важные критерии выбора масла:
Для повышения эффективности процессов закалки в масла добавляют следующие типы присадок:
Закалочные масла должны обладать следующими свойствами:
(сохранение свойств в течение всего срока службы)
(в масле накапливаются осадки, окалина с поверхности деталей)
(использование в открытых закалочных резервуарах)
(сильное завихрение горячего масла в закалочных резервуарах)
(зависит от температуры закалки; влияет на потери масла при извлечении деталей из резервуаров)
(влияет на вспенивание масла; создание «мягких мест» на поверхности закаливаемых деталей)
История выпуска закалочных масел
— Полностью обеспечить потребность в таких маслах;
— Обеспечить качество масел из-за отсутствия стабильных источников сырья, а также использования «экономичных» рецептур;
Серия Газпромнефть Термойл
Основные потребители закалочных масел
ОАО «АВТОВАЗ»
ЗАО «Челябпроммаш»
Камский автозавод – КАМАЗ
Завод имени Лихачева – ЗиЛ
Чебоксарский тракторный завод – ЧЗПТ
Челябинский тракторный завод – ЧТЗ
Владимирский тракторный завод – ВТЗ
Волгоградский тракторный завод – ВгТЗ
Липецкий тракторный завод – ЛТЗ
Ростсельмаш
Уральский завод тяжелого машиностроения
Ижорские заводы
Новокраматорский машиностроительный завод
Красноярский завод тяжелого машиностроения
ОАО «ПО СЕВМАШ»
ОАО «Восточно-Сибирский машиностроительный завод»
Производители закалочных масел
В России закалочные масла производят:
ТНК-СМ ——> Термо 16, 26
ООО «Волгохимнефть» ——> ВОЛТЕС МЗ-16, 26, 120
ЗАО «Карбон Инвест» ——> масло Термойл
ООО «Полиэфир» ——>масла МЗМ-16, МЗМ-26, МЗМ-120
Импортные масла:
TOTAL DRASTA C ——> масла для холодной закалки
TOTAL DRASTA H ——> масла для горячей закалки
Shell Valuta ——> для горячей закалки
Fuchs THERMISOL QB ——> масла для холодной закалки
Fuchs THERMISOL QH ——> масла для горячей закалки
Fuchs THERMISOL QW ——> масла для изотермической закалки
Закалка в управляемом потоке масла – новый взгляд на привычные проблемы.
В.Я. Сыропятов, Е.В. Ильичев.
Введение.
Закалка – один из самых древних и наиболее широко известных процессов термообработки. За столетия она «обросла» массой легенд, суеверий и предрассудков. Однако, несмотря на кажущуюся простоту процесса и обилие материала в справочной литературе, термист-практик подчас сталкивается с серьезными проблемами. Особенно часто это происходит при освоении новой продукции или при повышении требований конечного пользователя к качеству продукции. Закалить болт М22 из стали 40Х на твердость 40…45HRC для любого не проблема. Обеспечить при этом прочность по 10-му классу при производительности 120 кг/час, это уже вопрос.
Оба этих параметра – и рост требований, и повышение гибкости производства – являются сегодня непременными атрибутами нашей жизни. Целью данной работы было, используя многолетний опыт, дать термисту-практику в новых условиях гибкий и надежный инструмент, обеспечивающий достаточно простое решение сложных вопросов. Стратегический принцип Компании «Накал» — обеспечивать Заказчика комплектным оборудованием для термообработки, сопровождаемым надежным технологическим обеспечением. Закалочные баки – немаловажная составная часть комплектного оборудования.
Постановка задачи и выбор решения.
Для большинства средне и экономно легированных сталей наибольший интерес представляет закалка на масло. И наиболее распространено индустриальное И-20А. Однако наличие массы нерешенных вопросов на практике закалки привело к поиску различных путей решения. Бурное развитие некоторое время назад получили синтетические закалочные среды — водные растворы полимеров. В штучном производстве, при наличии мастерства и заинтересованности термиста, результаты получались прекрасные. Термист сам чувствует, когда и на сколько надо скорректировать закалочный раствор, какие детали и до какой степени подрагивания крючка или клещей надо «качать», а когда положить. Сложнее задача оказалась в производстве, начиная с мелкосерийного, при необходимости закалки садок деталей, зачастую весом до 200…300 кг. И это при сменной работе персонала на фоне общего падения квалификации в условиях зачастую не определенной мотивации кадров. Здесь корректировка раствора нужна практически ежедневная и не на глаз, а с помощью специальной аппаратуры для определения закаливающей способности раствора. В противном случае достаточно легко получить как низкую твердость, так и трещины с неприемлемыми деформациями. Стоимость подобной аппаратуры начинается от 100 тысяч рублей. Обязательное условие – наличие обученного персонала, могущего с высокой степенью надежности интерпретировать результаты испытаний и предпринять правильные действия. Подобные решения доступны далеко не всем, и технолог-термист зачастую остается один на один с масляным баком, «пятнистыми» деталями и справочником термиста.
Из курса технологии термообработки нам известно – основная задача при закалке на масло это снятие паровой рубашки с поверхности деталей. Справочник рекомендует обычно три решения: барботаж сжатым воздухом, возвратно-поступательное перемещение садки в масле и масляный насос. Если имеется компрессорная, выбирают первое решение. Если нет, но удается «пробить», ставят насос для циркуляции, НШ-40 или НШ-100. Если ни того ни другого, остается произвол термиста, работающего на тельфере. Однако, первые два пути имеют свои подводные камни.
Сколько дать сжатого воздуха и в какое место бака, в зависимости от конфигурации садки совершенно не однозначно. Чаще всего закаливающая способность бурно «кипящего» масла снижается – воздух прекрасный теплоизолятор. Доступные масляные насосы, обеспечивая высокое давление, чаще всего не имеют нужных нам показателей по производительности, и, опять же, неоднозначно как направить поток на садку деталей. Немаловажно и то, что абсолютно герметичных насосов по приемлемой цене не существует и возникает проблема борьбы с подтеканием масла.
Решение, между тем, существует. Универсальные печи, проходные толкательные агрегаты, СНЦА, Пекаты, Холкрофты, конструкции ЗИЛ и т.п. Все они имели мешалки масла в закалочных баках. Конечно, проблемы были, но несоизмеримо меньшие, чем при других вариантах. Основным направлением были поиск и разработка новых закалочных масел с целью расширения температурного интервала в порядке борьбы с деформациями.
Сложилась уникальная ситуация: крупные предприятия, имеющие прекрасные закалочные баки в линиях термообработки, зачастую не работают на полную мощность, а малые и средние предприятия, быстро развивающиеся в условиях растущей децентрализации и специализации производства, не имеют возможности использовать подобное оборудование. Чаще всего для большинства термистов доступны шахтные и камерные нагревательные электропечи. И не только ввиду стоимости собственно оборудования. Инженерная обвязка универсальной печи с встроенным закалочным баком, агрегатированной в комплексе с моечной машиной и отпускными печами, стоит неизмеримо больше.
Одно из условий, принятое во внимание при принятии решения состоит в том, что наш закалочный бак должен быть гибким инструментом. Немногие наши партнеры могут сказать, что они калят одну и ту же деталь каждый день в течение года. Растет номенклатура деталей и количество борабатываемых марок сталей.
Общее решение: наш бак должен иметь мешалку с возможностью регулирования потока масла, т.е. управляемый потокообразователь закалочного масла. В этом случае технолог должен иметь возможность легко регулировать процесс закалки. Например, на тонких деталях, где нет проблем с прокаливаемостью, создавать меньший поток для снижения деформаций, на деталях большего сечения увеличивать поток для обеспечения снятия паровой рубашки. Серьезная проблема – обеспечение равномерного снятия паровой рубашки на деталях, загружаемых в оснастку «навалом».
Всем этим условиям удовлетворяет одна из идей первой половины 70-х годов, прошедшая, по странному стечению обстоятельств, незамеченной широкой общественностью термистов. Причина, возможно, кроется в том, что именно в этот период набирало темпы всеобщее увлечение водными растворами полимеров.
Однако, в технической литературе встречались теоретические разработки, доказывавшие очевидную истину: именно ламинарный поток закалочной среды обеспечивает равномерное удаление паровой рубашки с поверхности обрабатываемых деталей. Линейная скорость потока определяет скорость охлаждения и получаемый при закалке результат. Линейная скорость потока определяется соотношением ламинарной и турбулентной составляющих. Повышение турбулентности потока ведет к снижению его ламинарности и снижению его линейной скорости. Для специалиста по плотинам, турбинам и вообще гидродинамике это очевидные, прописные истины. В приложении к технологии, имеющей 2-х тысячелетнюю историю, они звучат как откровении.
В течение последних 20 лет автором данной работы идея реализовывалась при модернизации оборудования на 12 объектах и с обязательным положительным результатом. Доведение же до серийного продукта, в отсутствии объективной потребности и производственной базы, не представлялось целесообразным.
Методика испытаний и обсуждение результатов.
В порядке инициативных исследовательских и опытно-конструкторских работ Компании был изготовлен масляный закалочный бак объемом 700 л. Бак был оснащен системой регулирования температуры: нагреватели ТЭН мощностью 16 кВт, термометр сопротивления градуировки Pt100, регулятор «Термодат-10». При превышении температуры включался насос охлаждения НШ-40, перекачивающий масло через водоохлаждаемый теплообменник.
Для создания управляемого потока масла бак был оснащен 4-х лопастной крыльчаткой, установленной в отделенной от основного пространства перегородкой части бака. Крыльчатка имела привод от асинхронного двигателя переменного тока мощностью 4 кВт и максимальным числом оборотов 930 об/мин, рис. 1.
Для управления двигателем использовали фазочастотный преобразователь. Это обеспечивало возможность плавного либо ступенчатого изменения числа оборотов и, соответственно, скорости потока закалочного масла.
Испытания проводили на масле индустриальном И-20А. Рабочей температурой был выбран интервал 50…70°С.
Первичные испытания методом замера движения марок в потоке показали, что c увеличением числа оборотов скорость потока растет, Рис. 2.
Рис. 2. Изменение скорости потока закалочного масла в зависимости от скорости вращения крыльчатки потокообразователя.
Как видно из приведенных результатов, в диапазоне от 200 до 500 об/мин имеется практически прямо пропорциональная линейная зависимость скорости потока от скорости вращения крыльчатки. Интересна и достигаемая с двигателем 4 кВт при 600 об/мин скорость потока 8 м3/мин. Закономерен вопро: каких размеров насос может это обеспечить? С повышением скорости вращения крыльчатки характер роста скорости потока меняется, прирост скорости потока с увеличением числа оборотов уменьшается, что косвенно свидетельствует об изменении характера потока масла.
Для качественной оценки явления были проведены замеры гидростатического давления потока масла. Измерения проводились посредством погруженной в поток трубки, соединенной с U-образным водным манометром. Результаты приведены на Рис. 3.
Риc. 3. Изменение статического давления в потоке масла с изменением числа оборотов крыльчатки.
Как видно из приведенных результатов, при достижении и превышении 550…600 об/мин практически не меняются как скорость, так и давление потока масла.
Были проведены замеры распределения давления по сечению бака при различной частоте вращения крыльчатки. До 600 об/мин разница в давлении в разных точках потока практически не наблюдалась. С превышением указанной величины разница давления по разным точкам замера достигала 500 Па, наблюдались точки с давлением, равным атмосферному.
Естественным следует вывод о переходе потока масла из преимущественно ламинарного в турбулентный при превышении частотой вращения величины 600 об/мин. Для рассматриваемой задачи – получения управляемого закалочного устройства с равномерными и повторимыми результатами — предположительно был необходим интервал именно преимущественно ламинарного потока.
Таким образом, для натурных испытаний управляемого потокообразователя был выбран диапазон частоты вращения крыльчатки 100…600 об/мин.
Испытания свойств устройства проводили при закалке деталей ст. 40Х в виде пластин толщиной 16 мм и габаритами 120Х200 мм. Детали загружались в жаропрочную корзину Æ 550 мм, высотой 400 мм. Суммарная загрузка составляла 140 кг, с учетом корзины масса садки составляла 180 кг. Между деталями размещали образцы-свидетели из сталей 40Х и 30ХГСА Æ 30 мм и длиной 50 мм. Пластины укладывались вертикально с обеспечением возможности их омывания потоком масла, при этом в целях полной загрузки касания пластин не исключали.
Нагрев под закалку проводили в шахтной электропечи СШЦМ-6.6/9,5 с защитной атмосферой, температура нагрева 860°С, выдержка 30 минут по достижении температуры. Время выдержки установили контрольным замером с помощью погружной термопары на первой садке и в дальнейшем не меняли.
Перенос садки на закалку осуществлялся электротельфером, время переноса составляло в среднем 10 сек. Температура масла в момент погружения деталей составляла 50°С, при 60°С включался насос охлаждения масла, в дальнейшем температура масла поднималась до 70°С, далее снижалась до установленной.
Закалку опытных садок проводили при частотах вращения крыльчатки 15, 250, 350 450 и 550 об/мин.
На поперечных шлифах образцов-свидетелей и, выборочно, деталей оценивали микроструктуры и изменение твердости по сечению. Измерение твердости проводили на твердомере Роквелл с нагрузкой 150 кгс. Микроструктуру оценивали после травления 5 % спиртовым раствором HNO3 при увеличении 400 крат.
Рис. 4. Изменение твердости поверхности образцов-свидетелей в зависимости от частоты вращения крыльчатки потокообразователя.
Как видно из приведенных на рис. 4 результатов, твердость поверхности стали 40Х с увеличением числа оборотов растет до 54 HRC при 450 об/мин и далее не меняется. Твердость поверхности стали 30ХГСА растет с увеличением числа оборотов до 350 об/мин, далее несколько снижается.
Рис. 5. Изменение твердости от поверхности по сечению образцов-свидетелей ст. 40Х Æ 30 мм после закалки с разной частотой вращения крыльчатки.
Рис. 6. Изменение твердости от поверхности по сечению образцов-свидетелей ст. 30ХГСА Æ 30 мм после закалки с разной частотой вращения крыльчатки.
Анализ микроструктуры, например, рис. 7 и рис. 8, объясняет снижение микротвердости от поверхности к сердцевине. Во всех случаях имеет место появление все большего количества феррита. Его исключение путем подбора оптимальных характеристик работы потокообразователя позволяет обеспечить сквозную закалку с гомогенной твердостью и высокие прочностные характеристики деталей.
Рис.7. Микроструктура сердцевины образца ст. 40Х прошедшего закалку при 250 об/мин. Снято при увеличении 400 крат.
Рис.8. Микроструктура сердцевины образца ст. 40Х прошедшего закалку при 450 об/мин. Снято при увеличении 400 крат.
Интересен так же результат по зависимости тверд��сти от скорости потока закалочного масла: для стали 40Х оптимальный диапазон 450…550 об/мин, а для стали 30ХГСА 350 об/мин.
Обращают на себя внимание также непривычно высокие для данных марок сталей величины твердости.
Представляется, что обнаруженные эффекты должны быть темой более подробного изучения с привлечением тонких методов исследования.
В целом испытания показали оправданность сделанного выбора. Созданный потокообразователь обеспечивает быструю, с минимальным набором измерительных средств и за минимальное время, отладку и оптимизацию процесса закалки для каждой марки стали в зависимости от конфигурации деталей и вида оснастки. В дальнейшем один раз отработанная технология обеспечивает высокую степень повторимости результатов.
Применяемый фазочастотный преобразователь показал высокую надежность в работе, простоту настройки и гибкость в управлении. Управление скоростью врашения осуществляется либо потенциаметром с контролем установленной величины, либо набором тумблеров на заранее запрограммированные частоты. При этом предусматривается возможность дежурного режима – медленное перемешивание масла при разогреве для исключения локалного перегрева в зоне расположения нагревателей.
В течение года эксплуатации на собственном термическом производстве практически не имелось проблем с заниженной или неравномерной твердостью деталей после закалки.
Компания, исходя из стратегической линии на комплексное и максимально полное обеспечение требований заказчиков, приступила к комплектации серийных масляных ванн (масляных закалочных баков) управляемых потокообразователем закалочного масла.