Меню

Радиус колеса автомобиля колебания поршня

Радиусы автомобильного колеса

Все силы, действующие на автомобиль со стороны дороги, передаются через колеса. Радиус колеса, снабженного пневматической шиной, в зависимости от веса груза, режима движения, внутреннего давления воздуха, износа протектора, может изменяться.

У колес различают следующие радиусы:

1) свободный; 3) динамический;

2) статический; 4) кинематический.

Свободный радиус (rсв) — это расстояние от оси неподвижного и ненагруженного колеса до наиболее удаленной части беговой до­рожки. Для одного и того же колеса величина Rсв зависит только от величины внутреннего давления воздуха в шине.

Свободный радиус колеса указывается в технической характеристике шины. Если указанная характеристика отсутствует в справочных данных, то ее значение можно определить по маркировке шины.

Статический радиус (rст) это расстояние от центра неподвижного колеса, нагруженного только нормальной силой, до опорной плоскости. Значение статического радиуса меньше свободного на величину радиальной деформации:

где hz = Rzш — радиальная (нормальная) деформация шины, м;

Rz — нормальная реакция дороги, Н;

Сш — радиальная (нормальная) жесткость шины, Н/м.

Нормальную реакцию дороги, действующую на одно колесо можно определить по формуле:

где GО — вес автомобиля, приходящийся на определенную ось.

Из формулы (1) находим значение радиальной жесткости шины:

Радиальная жесткость шины зависит от ее конструкции и внутреннего давления воздуха рш. Если известна зависимость Сш от рш, то величину деформации шины можно определить при любом внутреннем давлении воздуха. При номинальном давлении воздуха и нагрузке значение статического радиуса колеса можно найти по формуле:

где do — диаметр обода колеса, м;

Нш — высота профиля шины в свободном состоянии, м;

lш — коэффициент радиальной деформации шины.

Для шин обычного профиля, а также широкопрофильных шин lш = 0,10 — 0,15; для арочных и пневмокатков lш =0,20 — 0,25.

Номинальное значение rст колеса применительно к номинальной нагрузке и внутреннему давлению воздуха указывается в технической характеристике шины.

Динамический радиус (rд) — это расстояние от центра катящегося колеса до опорной плоскости. Величина rд зависит в основном от внутреннего давления воздуха в шине, вертикальной нагрузки на колесо и скорости его движения. При увеличении скорости автомобиля динамический радиус несколько возрастает, что объясняется растяжением шины центробежными силами инерции.

Кинематический радиус (rк) — это радиус условного не дефомирующегося катящегося без скольжения колеса, которое имеет с данным эластичным колесом одинаковые угловую и линейную скорости:

Величину rк определяют опытным путем, для этого замеряют путь S, проходимый автомобилем за nк полных оборотов:

где Vx — линейная скорость колеса;

wк — угловая скорость колеса;

t — время движения.

Разница между радиусами rд и rк обусловлена наличием проскальзывания в области контакта шины с дорогой.

В случае полного буксования колеса путь, проходимый колесом равен нулю S = 0, а следовательно rк = 0. Во время скольжения заторможенных невращающихся (блокированных) колес, т.е. при движении юзом , nк = 0 и rк ® ¥.

При движении автомобиля по дорогам с твердым покрытием и хорошим сцеплением приближенно принимают rк = rд = rс = r.

Радиусы автомобильного колеса

ВЗАИМОДЕЙСТВИЕ КОЛЕСА С ОПОРНОЙ ПОВЕРХНОСТЬЮ

ВВЕДЕНИЕ

Теория автомобиля представляет собой научную дисциплину, изучающую эксплуатационные свойства автомобиля, а также расчетные и экспериментальные методы определения этих свойств. Теория автомобиля имеет большое значение для повышения научно технических знаний автомобильного инженера-механика.

В данной дисциплине рассматривают эксплуатационные свойства, непосредственно связанные с движением автомобиля. К ним относят динамичность, топливную экономичность, тормозные свойства, управляемость, маневренность, устойчивость, проходимость и плавность хода автомобиля. Остальные эксплуатационные свойства (вместимость, прочность, приспособленность автомобиля к техническому обслуживанию, ремонту и т.д.) рассматриваются в других курсах.

Значение данных свойств необходимо для различных типов автомобилей. Для автомобиля, работающего в городе, наиболее важны динамичность, топливная экономичность, тормозные свойства, а вопросы устойчивости и проходимости второстепенны. Для гоночного первостепенное значение имеет динамичность, устойчивость, управляемость, тормозные свойства. Таким образом, цель теории автомобиля, как научной дисциплины состоит в повышении производительности и экономичности, обеспечении необходимой безопасности и создании удобств для водителей и пассажиров.

Основные положения теории автомобилей как науки были разработаны академиком Е.А. Чудаковым и сформулированны в учебнике «Теория автомобилей», впервые вышедшем в 1935 г. В последующем отдельные разделы теории автомобилей получили дальнейшее развитие в трудах многих советских и зарубежных ученых.

Совершенствование методов расчета тягово-динамических и топливно-экономических свойств автомобиля нашло отражение в трудах Зимелева Г.В., Фалькевича Б.С., Яковлева Н.А. Вопросы управляемости и устойчивости автомобиля разрабатывались Литвиновым А.С., Певзнером Я.М., методы расчетов плавности хода автомобиля и обоснование выбора параметров автомобиля как колебательной системы – Ротенбергом Р.В., Певзнером Я.М. и др.. В работах Бухарина И.А., Фрумкина А.К. изложены методы расчета тормозной динамики автомобиля. Большой вклад в развитие теории автомобиля сделали зарубежные ученые М. Мичке, Дж. Вонг, В. Камм, А. Янте и другие.

Все силы, действующие на автомобиль со стороны дороги, передаются через колеса. Радиус колеса, снабженного пневматической шиной, в зависимости от веса груза, режима движения, внутреннего давления воздуха, износа протектора, может изменяться.

У колес различают следующие радиусы:

1) свободный; 3) динамический;

2) статический; 4) кинематический.

Свободный радиус (rсв) — это расстояние от оси неподвижного и ненагруженного колеса до наиболее удаленной части беговой до­рожки. Для одного и того же колеса величина Rсв зависит только от величины внутреннего давления воздуха в шине.

Статический радиус (rст) это расстояние от центра неподвижного колеса, нагруженного только нормальной силой, до опорной плоскости. Значение статического радиуса меньше свободного на величину радиальной деформации:

Читайте также:  Лодочные моторы ветерок руководство по эксплуатации

где hz = Rzш — радиальная (нормальная) деформация шины, м;

Rz — нормальная реакция дороги, Н;

Сш — радиальная (нормальная) жесткость шины, Н/м.

Радиальная жесткость шины зависит от ее конструкции и внутреннего давления воздуха. Если известна зависимость Сш от рш, то величину деформации шины можно определить при любом внутреннем давлении воздуха. При номинальном давлении воздуха и нагрузке значение статического радиуса колеса можно найти по формуле:

где do — диаметр обода колеса, м;

Нш — высота профиля шины в свободном состоянии, м;

lш — коэффициент радиальной деформации шины.

Для шин обычного профиля, а также широкопрофильных шин lш = 0,10 — 0,15; для арочных и пневмокатков lш =0,20 — 0,25. Номинальное значение rст колеса применительно к номинальной нагрузке и внутреннему давлению воздуха указывается в технической характеристике шины.

Динамический радиус (rд) — это расстояние от центра катящегося колеса до опорной плоскости. Величина rд зависит в основном от внутреннего давления воздуха в шине, вертикальной нагрузки на колесо и скорости его движения. При увеличении скорости автомобиля динамический радиус несколько возрастает, что объясняется растяжением шины центробежными силами инерции.

Кинематический радиус (rк) — это радиус условного не дефомирующегося катящегося без скольжения колеса, которое имеет с данным эластичным колесом одинаковые угловую и линейную скорости:

Величину rк определяют опытным путем, для этого замеряют путь S, проходимый автомобилем за nк полных оборотов:

где Vx — линейная скорость колеса;

wк — угловая скорость колеса;

t — время движения.

Разница между радиусами rд и rк обусловлена наличием проскальзывания в области контакта шины с дорогой. В случае полного буксования колеса путь, проходимый колесом равен нулю S = 0, а следовательно rк = 0. Во время скольжения заторможенных невращающихся (блокированных) колес, т.е. при движении юзом , nк = 0 и rк ® ¥. При движении автомобиля по дорогам с твердым покрытием и хорошим сцеплением приближенно принимают rк = rд = rс = r.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Положение градусов коленвала, от ВМТ. Расчета хода поршня в мм.

Калькулятор хода поршня в двигателе. Угол, окружность, треугольник.

Калькулятор хода поршня в двигателе. Угол, окружность, треугольник.

Калькулятор положения поршня в двигателе.

Делал по памяти, могу немного ошибаться в цифрах . В принципе, имея точку ВМТ и зная длину хода поршня, а также диаметр шкива / демпфера коленвала — можно поиграться с любым двигателем . Калькулятор немного врет возле нижней мертвой точки, не знаю с чем это связано, старался не зажимать вычисления после запятой .
Вводные данные для Cummins ISX :
ход поршня = 169 мм .
диаметр демпфера = 342 мм (возможно путаю с Detroit Diesel, S60 Engine) .
точка установки поршня для процедуры Timing / Static = 5.16 мм .
Все остальные данные вы можете найти и рассчитать сами .

Калькулятор положения поршня двигателя / ДВС может быть применим для любых двигателей, так как все расчеты выполняются по законам геометрии, согласно индивидуально введенным данным, то есть — по предварительной настройке .

Немного теории и предпосылок .

Из чего складывается мощная и экономичная работа двигателя — в целом ? Из правильной : разработки конструкции, сборки на автозаводе, регулировки и эксплуатации . Автомобили в заводской конфигурации, даже при наличии серьезной неисправности — не доставляют проблем и хлопот при ремонте, проводимом в соответствии с указаниями от производителя . Инженеры не разрабатывают неприменимые двигателя, пользователи не приобретают автомобили, не соответствующие их техническим ожиданиям, а автозаводы производят продукцию с учетом стандартного отклонения +/- 10% . Очень интересный вопрос : почему некоторые автомобили показывают отличающиеся эксплуатационные показатели в пределах одного ряда / модели ? .

Возможно требуется ремонт, но на эти вопросы должны ответить диагностика и проверка основных технических характеристик узлов и компонентов, заданных производителем . В работе двигателя с турбонаддувом прослеживаются определенные закономерности . Топливная система, используя механику двигателя, и учитывая объем / давление поступающего воздуха дозирует объем топлива для производства мощности движения и сопутствующие выхлопные газы, которые раскручивают турбонагнетатель для снабжения двигателя дополнительным воздухом / кислородом . Замкнутый цикл должен работать в сбалансированном режиме .
# нет турбонаддува — нет подачи топлива, нет мощности .
# нет топлива — нет давления выхлопных газов, турбонаддува и мощности .
# нет фаз ГРМ / установки момента впрыска — нет дыхания двигателя, нет мощности, детонация или перегрев, возможные повреждения компонентов .
# в любом случае, кроме нормального состояния — повышенный или высокий расход топлива .

Так, или иначе — работа всех компонентов требует их соответствия : друг другу, программе электронного блока управления, механических первичных установок и регулировок компонентов — как это было задано производителем . Включая допустимый износ по пробегу и указания по возможности повторного использования БУ автозапчастей .

# Непосредственно для Cummins — это CPL / Common Parts List — общий сборочный лист с указанием применяемых номеров ответственных компонентов, отклонение от которого недопустимо и ведет к повреждению смежных компонентов или двигателя .

# Для Detroit Diesel, комплектация по серийному номеру двигателя — играет огромное значение для сборки, конфигурации и — дальнейшей эффективной работоспособности двигателя . Хотя, регулировки ГРМ — различаются незначительно, разнообразие распредвалов : 32J, 47J, 65J, 92J, 101J, 107J и других обозначений — говорят о широком интервале заводских настроек (зависимых от высоты и формы кулачков вала) и, соответственно — требуют применения специфичных сопряженных деталей, обеспечивающих правильную производительность всех компонентов и агрегатов двигателя — в сборе .

Читайте также:  Ему лада приора жрет масло

# Производитель турбонагнетателей HOLSET явным образом указывает :

. Уважаемые потребители! Обратите внимание, что большинство возвращаемых турбин — не имели дефектов . . Вы должны соображать ( три удара пальцем по лбу ), при замене турбонагнетателя с оригинальным номером — на возможный дубликат .

# Любые модификации автомобиля с отклонением от стандартов — попадают в сферу ответственности заявителя модификации, при снижении эффективности эксплуатационных характеристик увеличивают эксплуатационные расходы / затраты и усложняют / увеличивают продолжительность и стоимость ремонта .

# Эти условия значительно затрудняют выбраковку компонентов топливной системы при отсутствии их явных признаков неисправностей или соответствующих кодов ошибок в памяти электронного блока управления .

Проверка установки фаз ГРМ и момента впрыска Cummins ISX.

Вопрос, который я собираюсь сегодня рассмотреть — проверка фаз механизма ГРМ двигателя Cummins ISX, которые не имеют шпонок распредвала — заданных углов / меток установки, что конструктивно выполнено, как плавающая посадка шестерен механизма ГРМ на конусы отдельных распредвалов клапанов и форсунок .

Производитель облегчил выполнение этой процедуры, отказавшись от стандартных меток ГРМ и используя плавную / точную установку временных моментов впрыска и ориентации положения клапанного механизма путем установки клиньев заданного размера, в соответствии с конструктивной сборкой двигателя из ответственных компонентов, указанного в CPL — общем списке автозапчастей . Пока двигатель соответствует номеру главного сборочного листа — все регулировки, компоненты и программное обеспечение работают в системе слаженного взаимодействия, разработанной и проверенной конструкторами двигателя . Все руководящие проверки предварительных механических установок и последующих регулировок подробно излагаются в руководствах на сайте Cummins, согласно номера двигателя и CPL / сборочного листа .

Проблемы с производительностью двигателя Cummins при его неизвестной истории предыдущего обслуживания и ремонта с заменой ответственных компонентов — требуют внимательного анализа текущего состояния и сборки в соответствии с конфигурацией каталога запчастей идентифицированного по номеру двигателя / CPL на сайте производителя .

В случае подозрения на неправильную установку временных меток механизма ГРМ или применения несоответствующих ответственных компонентов, таких, как : распредвал, форсунки, калибровка и прошивка ЭБУ — выполняется ряд проверок, направленных на выявление и восстановление текущего состояния двигателя к первоначальной конфигурации заводской сборки .

Одна из процедур — это проверка согласования временных меток установки ГРМ, включая первичную (положения распредвалов — клиньями) и процедуру Timing Static / статической механической точки момента начала впрыска топлива, сильно зависимой от износа, люфтов, зазора шестерен механизма ГРМ и применения несоответствующего распредвала форсунок с иными характеристиками .

Для процедуры Timing Static требуется специальное высокоточное приспособление проверки согласования углового положения от хода при вращении двигателя для обнаружения временных моментов и длительности рабочего хода компонентов . Процедура связана с частичной разборкой двигателя для привязки к опорным точкам измерения коленвала / распредвала форсунок .

Проверка фаз ГРМ с помощью компьютера / смартфона и калькулятора.

Мне же интересно произвести первичную проверку настроек временной синхронизации без специального оборудования и без разборки двигателя, при этом достигая максимальной точности измерения, а также иметь возможность применить эту операцию на двигателях других авто / производителей, как универсальную / базовую — по мере необходимости .

Задача :
— установить поршень на расстояние 5.16 мм до ВМТ .
— заметить высоту положения хода плунжера форсунки .
— прокрутить двигатель по часовой стрелке
— заметить высоту положения хода плунжера по окончания движения .
— при этом конечное угловое положение коленвала — неинтересно, но может быть измерено .
— измерить ход плунжера форсунки и сравнить с таблицей Timing / Static, согласно CPL .

# ход поршня от ВМТ до НМТ соответствует повороту коленвала на 180 градусов .
— достаточно вычислить длину дуги окружности демпфера крутильных колебаний, чтобы получить положение поршня в любой заданный момент времени, относительно ВМТ .
— ход поршня не прямо пропорционален повороту коленвала ( . )
— скорость хода поршня, малая у ВМТ / НМТ — увеличивается посередине, между ВМТ — НМТ, то есть ход поршня — величина нелинейная по отношении к константе / градации поворота коленвала .

Рассмотрим пример : на картинке явно прослеживаются линейные зависимости угла поворота коленвала и длины дуги окружности демпфера маховика крутильных колебаний коленвала . Длина окружности демпфера зависит от диаметра демпфера — то есть, все — как по школьной программе, 3-ий класс, вторая четверть . Однако, зависимость длины дуги окружности / угла ПКВ и хода поршня — величина нелинейная . Вот это значение и предстоит вычислить математическим путем . Возникает вопрос, с помощью каких формул возможно вычислить требуемые параметры ? .

Нарисуем еще одну картинку и попробуем прикинуть варианты .
— Становится совершенно очевидно, что ход поршня — это не произвольная величина, а жестко привязанная к длине / выносу шатунной шейки коленвала и ее угловому положению .
— Соответственно, можно представить ход поршня, как множество треугольников, причем это — равнобедренные треугольники, так как стороны OA = OB = R / радиус круга / окружности демпфера крутильных колебаний, к которому мы пытаемся привязать измерения .
— Следует рассматривать окружность с центром в точке O не только, как диаметр демпфера, но и подобие мнимой окружности движения шатунной шейки коленвала с центром в точке O .
— Также, зная длину хода поршня из спецификации Cummins или двигателя иного производителя можно вычислить диаметр окружности, описываемой шатунной шейкой, равный длине хода поршня, жестко связанного с шатунной шейкой коленвала . Полная длина хода поршня складывается из радиусов OD + OE, а текущее (пройденное) значение поршня можно вычислить вычитая из DE — CE / остаток пути .

Читайте также:  Масло для дизельных двигателей фольксваген кадди

Для окончательных расчетов этих расстояний и углов необходимо припомнить еще несколько геометрических обоснований волшебных линий треугольника и круга .
# Высота — линия из угла треугольника, перпендикулярная противоположной углу стороне . (раньше высота была перпендикулярно основанию, но сейчас, по современной науке, если треугольник упал набок — то его основание не будет параллельно земле, а будет очень даже не параллельно, со всеми вытекающими последствиями) .
# Медиана — линия, соединяющая вершину треугольника с серединой противолежащей стороны .
# Биссектриса — прямая, делящая угол пополам ; луч, исходящий из вершины угла и делящий угол на два равных угла .
# В равнобедренном треугольнике медиана, проведенная к основанию, является одновременно и биссектрисой, и высотой .
# Волшебные линии круга, кстати — не понадобились, но не стоит их игнорировать в будущем, ибо мы уже использовали круг, окружность, дугу и свяжем с ними углы, градусы, радианы и π .

Что дают нам эти умозаключения?
— Здесь, самое главное — не путаться в двух подобных окружностях :
— 1 случай : окружности описываемой движением шатунной шейки коленвала .
— 2 случай : окружности демпфера коленвала .
— это геометрически подобные окружности, но с разными фактическими размерами, опять же — пропорционально равными один / другому, так как связаны через угол синхронного вращения . Не суть .
— так, как OC это высота, то угол OCA = угол OCB = 90 градусов .
— так, как OC это биссектриса, то угол AOC = угол BOC .
— так, как OC это медиана, то CA = CB .

Но, эти знания пока никак не помогают узнать ни высоту OC, ни тем более длину хода поршня DC . Надо искать формулы треугольника для расчета высоты .
— через длины сторон треугольника не пойдет, CA = CB = неизвестно .
— через сторону и угол (не только для равнобедренного треугольника). OC = OB * Sin угла OBC . теоретически — подойдет .
— через сторону и площадь, не пойдет, площадь неизвестна .
— через стороны и радиус описанной окружности, не пойдет — нет описанной окружности .
— по катетам (только для прямоугольного треугольника), не пойдет .
— по стороне (только для равностороннего треугольника), не пойдет .
— через косинус (квадрат любой стороны треугольника равен сумме квадратов двух других, минус удвоенное произведение этих сторон на косинус угла между ними) . не пойдет : известна только одна сторона .
— следующие далее формулы треугольника — все сложнее и сложнее, что никак не влияет на ответ решения этой задачи . поэтому остановимся на формуле стороны и синуса угла, образованного стороной и основанием .

Если есть угломер для измерения поворота коленвала — замечательно, если нет — используем формулы пропорции длины окружности демпфера к угловому повороту коленвала . Откуда у нищих алмазы, вернее — где они их прячут ? .
— Диаметр демпфера = Ddamper = 2 * Rdamper
— Длина окружности = π * 2 * Rdamper = π * Ddamper
— Используя правило пропорции 360 / Lcircle = 1 / Larc находим Larc = 1 * Lcircle / 360 .
— Где, Lcircle — длина окружности демпфера, Larc — длина дуги окружности демпфера, соответствующая 1 градусу . Легко можно сделать и обратный расчет .

Припоминая, что сумма углов треугольника = 180 градусам и полный ход поршня ISX = 169 мм — теоретически у нас есть все исходные данные, чтобы посчитать путь поршня и выставить его в требуемое положение проверки длины наката / остатка высоты нажатия форсунки в соответствии с заданными значениями по CPL процедуры Timing / Static двигателя Cummins ISX .

То есть написать калькулятор расчета положения поршня для процедуры Timing / Static . Этим и займемся . Так . Ну, тут все как обычно, ввод, инициализация, расчеты, вывод . Ого . Синус яваскрипт не понимает углов в градусах — радианы ему подавай . А, бабы голой — не надо ? . Ну и задачка . Где-то я уже писал про это . Когда составлял таблицы радио / волн .
градус * π / 180 = радиан .
радиан * 180 / π = градус .
. так . ну, ладно . вроде — разродились .

Так, ну что вам сказать . Выглядит весьма убедительно . Осталось проверить теоретические и математические выкладки на практике .

Популярные теги для сайта.

Самые популярные теги, краткое описание более 1000 страниц менее, чем в 100 ключевых словах . Чтобы найти более подробную информацию, самое простое — использовать поиск по сайту на соответствующие запросу — ключевое слово или фразу .

Decoder данных . Авто . Бесплатно онлайн . Список ПК программ . Россия . Погода . ЭБУ . Sat . Torrent tracker . Работа двигателя . На трассе и по маршруту . Диагностика . ЦУП . УпрДор . Метео . Гидрометцентр . Москва . Екатеринбург . Смотреть прогноз . Расчет . Калькулятор . Онлайн . Вeacon . Calculator . COVID . ECU . Meritor . Motor . OBD . SDR . Telemetry . Tool . USB . Windows . Радио . Развлекательный сайт . Новости сегодня . Связь . Ремонт . Системы . Сканер . Состояние трассы . Диагностика двигателя . Длина волны . Программы для компьютера .

TechStop-Ekb.ru : познавательные развлечения, техника, технологии . На сайте, для работы и соответствия спецификациям — используются . Протокол HTTPS шифрования для безопасного соединения с сервером и защиты пользовательских данных . Антивирус DrWeb для превентивной защиты пользователей от интернет угроз и вирусов . Ресурс входит в рейтинги Рамблер Топ 100 (познавательно-развлекательные сайты) и Mail Top 100 (авто мото информация) .

Тех Стоп Екб RU (РФ) официальный сайт, популярные темы, погода, новости, обзоры с картинками, бесплатно, актуально, без регистрации . Смотреть утром, днем, вечером и ночью — круглосуточно онлайн .

Меню раздела, новости и новые страницы.

© 2021 Тех Остановка Екатеринбург, создаваемый с 2016++ с вами вместе навсегда бесплатно .

Adblock
detector