Пуск синхронного двигателя
Синхронный двигатель непосредственным включением обмотки статора (якоря) в сеть переменного тока не может быть запущен в ход.
Объясняется это следующим образом. При включении многофазной обмотки якоря в сеть практически мгновенно образуется вращающееся магнитное поле, частота вращения которого nп зависит oт частоты f протекающего по обмоткам тока (nп=60f/р). «Полюсы» этого поля, перемещаясь в пространстве, будут взаимодействовать то с одноименными, то с разноименными полюсами неподвижного, возбужденного ротора. В соответствии с этим будет меняться направление вращающего момента, действующего на ротор. В течение половины периода изменения тока в обмотках момент будет направлен в одну сторону, а в течение другой половины — в противоположную.
Пуск мог бы произойти, если бы ротор разогнался до установившейся скорости в течение полупериода, когда вращающий момент не меняет свой знак. При частоте 50 Гц полупериод равен 0,01 с. Из-за механической инерции за такое время роторы практически всех синхронных двигателей развернуться не смогут.
Существует несколько способов пуска двигателя. Эти способы заключаются в том, что в процессе пуска ротор двигателя разгоняется до скорости вращающегося поля, после чего двигатель входит в синхронизм и начинает работать как синхронный. Применение получили пуск с помощью разгонного двигателя, частотный пуск и асинхронный пуск. Наибольшее распространение имеет асинхронный пуск.
Пуск с помощью разгонного двигателя состоит в том, что посторонним (разгонным) двигателем ротор синхронной машины разворачивается до номинальной скорости. Обмотка возбуждения включена в сеть постоянного тока, а обмотка статора разомкнута. Затем производят включение ее на параллельную работу с сетью. После подключения машины к сети разгонный двигатель механически отсоединяют от вала синхронной машины, и последняя переходит в двигательный режим. Мощность разгонного двигателя невелика и составляет 10—20 % номинальной мощности синхронного двигателя. Эта мощность покрывает мощность механических и магнитных потерь в синхронном двигателе.
Частотный пуск применяется в том случае, если синхронный двигатель подключен к автономному источнику, частоту напряжения которого можно изменять от нуля до номинальной. Если плавно повышать частоту питающего напряжения, то соответственно будет увеличиваться скорость магнитного поля. Ротор, следуя за полем, постепенно будет повышать свою скорость от нуля до номинальной. В процессе пуска машина все время работает в синхронном режиме.
Асинхронный пуск аналогичен пуску асинхронного двигателя. Для этого на роторе в полюсных наконечниках размещают пусковую обмотку. Эта обмотка выполняется по типу короткозамкнутой обмотки ротора асинхронного двигателя и имеет то же устройство, что и демпферная обмотка генератора. При пуске трехфазная обмотка статора включается в сеть. Ток, который будет протекать по этой обмотке, создаст вращающееся магнитное поле. Оно наведет в пусковой обмотке ротора ЭДС и ток. В результате взаимодействия тока пусковой обмотки ротора с вращающимся магнитным полем образуется момент, под действием которого ротор придет во вращение и развернется до скорости, близкой к скорости поля ω1. Вращение его будет происходить со скольжением, которое зависит от нагрузки на валу (ω
Вхождение в синхронизм достигается после включения постоянного тока в обмотку возбуждения за счет возникающего при этом синхронизирующего момента. С этого времени машина начинает работать как синхронный двигатель. На рис. 9 показана схема асинхронного пуска. При пуске обмотка возбуждения не должна быть разомкнутой, так как в противоположном случае вследствие большого числа витков в ней вращающимся полем индуцировалась бы большая ЭДС, опасная не только для изоляции, но и для обслуживающего персонала. Обмотку возбуждения нельзя также замыкать накоротко, так как в этом случае она образует несимметричный (однофазный) контур. Он явится причиной образования дополнительного момента, под действием которого произойдет провал в кривой механической характеристики вблизи полусинхронной скорости. Из-за этого ротор при пуске может застрять на промежуточной скорости (в точке А на рис. 10). В начале пуска обмотка возбуждения LM должна быть замкнута на резистор с сопротивлением, приблизительно в 10—15 раз большим, чем сопротивление самой обмотки (положение 1 переключателя S). По окончании пуска переключатель S переводится в положение 2, и обмотка возбуждения включается в сеть постоянного тока.
Рис. 9. Схема асинхронного пуск синхронного двигателя
Рис. 10. Механическая характеристика двигателя при асинхронном пуске с провалом вблизи полусинхронной скорости | Рис. 11. Механическая характеристика двигателя при асинхронном пуске |
Асинхронный пуск синхронного двигателя характеризуется значениями пускового тока IП и вращающих моментов— начального пускового МП и входного МB (рис. 11). Входным называется асинхронный момент при скорости ротора, равной 0,95ω1. Этот момент равен наибольшему нагрузочному моменту, при котором возможно вхождение двигателя в синхронизм при включении постоянного тока в обмотку возбуждения.
Если сеть, в которую включается синхронный двигатель, недостаточно мощна, то во избежание большого падения напряжения при асинхронном пуске применяют меры для снижения начального пускового тока: включение через автотрансформатор, реактор и т.д.
6. Синхронные компенсаторы
Синхронный компенсатор является источником реактивной мощности и служит для регулирования cosφ сети. По режиму работы он является синхронным двигателем, работающим в режиме холостого хода, т. е. без механической нагрузки на валу. Синхронный компенсатор потребляет активную мощность, равную потерям внутри машины. Для повышения экономичности его работы потери стараются уменьшить, применяя для охлаждения водород, при этом из-за меньшей плотности водорода по сравнению с воздухом снижаются механические потери.
Рис. 12. U-образная характеристика синхронного компенсатора
Наиболее важной характеристикой синхронного компенсатора является U-образная характеристика (рис. 12). Она мало отличается от аналогичной характеристики синхронного двигателя при Р2=0.
Реактивная мощность, развиваемая синхронным компенсатором, зависит от тока возбуждения. Перевозбужденный синхронный компенсатор работает с током, опережающим напряжение сети, и отдает реактивную мощность в сеть. При недовозбуждении он работает с током, отстающим от напряжения сети, и потребляет реактивную мощность из сети.
Синхронный компенсатор включается в конце линии передачи непосредственно у потребителя. Компенсируя частично или полностью реактивную составляющую тока линии, он уменьшает общий ток и потери в ней.
Синхронные компенсаторы чаще всего применяются в сетях с большой индуктивной нагрузкой для компенсации отстающего тока. Такую нагрузку обычно создают включенные в сеть асинхронные двигатели. Компенсатор в этом случае работает с перевозбуждением. На рис. 13, 14 показаны схема включения компенсатора GC и векторная диаграмма. На векторной диаграмме ток I представляет собой ток в сети при отсутствии синхронного компенсатора, а ток I‘ — при его включении. Реактивная составляющая IР тока I частично скомпенсирована током синхронного компенсатора IC,K. В результате этого уменьшается угол между напряжением U и током I‘, a cosφ’ повышается.
В некоторых случаях синхронный компенсатор работает с недовозбуждением. Необходимость в этом возникает, если ток в линии содержит значительную опережающую составляющую, обусловленную ее емкостным сопротивлением. Это наблюдается в часы малой нагрузки линии передачи, когда отстающий ток нагрузки не компенсирует емкостную составляющую тока линии.
Синхронные компенсаторы устанавливаются также и для регулирования напряжения в конце линии электропередачи путем регулирования реактивного тока и изменения падения напряжения и его фазы. При опережающем токе синхронного компенсатора его ток возбуждения больше, чем при отстающем, поэтому условия нагрева компенсатора получаются более тяжелыми при опережающем токе.
Рис. 13. Схема включения синхронного компенсатора
Рис. 14. Векторная диаграмма для тока в сети при включенном синхронном компенсаторе
Вследствие этого номинальной мощностью синхронного компенсатора считается мощность при опережающем токе.
Синхронные компенсаторы имеют некоторые конструктивные отличия от двигателей. Они не имеют выходного конца вала, кроме того, поскольку вал не передает вращающего момента, он может быть выполнен тоньше. Так как от синхронного компенсатора не требуется обеспечения больших перегрузок по моменту, то МMAX у них может быть снижен за счет уменьшения воздушного зазора (увеличения хd). Уменьшение воздушного зазора способствует сокращению размеров обмотки возбуждения. Все это приводит к уменьшению габаритов синхронного компенсатора.
Компенсаторы выпускаются на мощности от 2,8 до 320 MB∙А обычно в горизонтальном исполнении. Их номинальные напряжения составляют 6,6-20 кВ, а частота вращения 1000 или 750 об/мин.
Типовые схемы и способы пуска синхронных двигателей
Для обеспечения работы мощных электроприводов применяются синхронные электродвигатели. Они нашли применение в компрессорных установках, насосах, в системах, прокатных станах, вентиляторах. Применяются в металлургической, цементной, нефтегазовой и других отраслях промышленности, где необходимо использовать оборудование большой мощности. В этой статье мы решили рассказать читателям сайта Сам Электрик, как может выполняться пуск синхронных двигателей.
Преимущества и недостатки
Конструктивно синхронные двигатели сложнее асинхронных, но они имеют ряд преимуществ:
- Работа синхронных электродвигателей в меньшей степени зависит от колебания напряжения питающей сети.
- По сравнению с асинхронными, они имеют больший КПД и лучшие механические характеристики при меньших габаритах.
- Скорость вращения не зависит от нагрузки. То есть колебания нагрузки в рабочем диапазоне не влияют на обороты.
- Могут работать со значительными перегрузками на валу. Если возникают кратковременные пиковые перегрузки, повышением тока в обмотке возбуждения компенсируют эти перегрузки.
- При оптимально подобранном режиме тока возбуждения, электродвигатели не потребляют и не отдают в сеть реактивную энергию, т.е. cosϕ равен единице. Двигатели, работая с перевозбуждением, способны вырабатывать реактивную энергию. Что позволяет их использовать не только в качестве двигателей, но и компенсаторов. Если необходима выработка реактивной энергии, на обмотку возбуждения подается повышенное напряжение.
При всех положительных качествах синхронных электродвигателей у них имеется существенный недостаток – сложность пуска в работу. Они не имеют пускового момента. Для запуска требуется специальное оборудование. Это долгое время ограничивало использование таких двигателей.
Способы пуска
Пуск синхронных электродвигателей можно осуществить тремя способами – с помощью дополнительного двигателя, асинхронный и частотный запуск. При выборе способа учитывается конструкция ротора.
Он выполняется с постоянными магнитами, с электромагнитным возбуждением или комбинированным. Наряду с обмоткой возбуждения на роторе смонтирована короткозамкнутая обмотка – беличья клетка. Её также называют демпфирующей обмоткой.
Запуск с помощью разгонного двигателя
Этот метод пуска редко применяется на практике, потому что его сложно реализовать технически. Требуется дополнительный электродвигатель, который механически соединен с ротором синхронного двигателя.
С помощью разгонного двигателя раскручивается ротор до значений близких к скорости вращения поля статора (к синхронной скорости). После чего на обмотку возбуждения ротора подают постоянное напряжение.
Контроль осуществляется по лампочкам, которые включены параллельно рубильнику, подающему напряжение на обмотки статора. Рубильник должен быть отключен.
В первоначальный момент лампы мигают, но при достижении номинальных оборотов они перестают гореть. В этот момент подают напряжение на обмотки статора. После чего синхронный электродвигатель может работать самостоятельно.
Затем дополнительный мотор отключается от сети, а в некоторых случаях его отсоединяют механически. В этом состоят особенности пуска с разгонным электродвигателем.
Асинхронный запуск
Метод асинхронного пуска на сегодня самый распространенный. Такой запуск стал возможен после изменения конструкции ротора. Его преимущество в том, что не нужен дополнительный разгонный двигатель, так как дополнительно к обмотке возбуждения в ротор вмонтировали короткозамкнутые стержни беличьей клетки, что дало возможность запускать его в асинхронном режиме. При таком условии этот способ пуска и получили широкое распространение.
Сразу же рекомендуем просмотреть видео по теме:
При подаче напряжения на обмотку статора происходит разгон двигателя в асинхронном режиме. После достижения оборотов близких к номинальным, включается обмотка возбуждения.
Электрическая машина входит в режим синхронизма. Но не все так просто. Во время пуска в обмотке возбуждения возникает напряжение, которое возрастает с ростом оборотов. Оно создает магнитный поток, который воздействует на токи статора.
При этом возникает тормозящий момент, который может приостановить разгон ротора. Для уменьшения вредного воздействия обмотки возбуждения подключают к разрядному или компенсационному резистору. На практике эти резисторы представляют собой большие тяжелые ящики, где в качестве резистивного элемента используются стальные спирали. Если этого не сделать, то из-за возрастающего напряжения может произойти пробой изоляции. Что повлечет выход оборудования из строя.
После достижения подсинхронной частоты вращения, от обмотки возбуждения отключаются резисторы, и на нее подается постоянное напряжение от генератора (в системе генератор-двигатель) или от тиристорного возбудителя (такие устройства называются ВТЕ, ТВУ и так далее, в зависимости от серии). В результате чего двигатель переходит в синхронный режим.
Недостатками этого метода являются большие пусковые токи, что вызывает значительную просадку напряжения питающей сети. Это может повлечь за собой остановку других синхронных машин, работающих на этой линии, в результате срабатывания защит по низкому напряжению. Для уменьшения этого воздействия цепи обмоток статора подключают к компенсационным устройствам, которые ограничивают пусковые токи.
- Добавочные резисторы или реакторы, которые ограничивают пусковые токи. После разгона они шунтируются, и на обмотки статора подается сетевое напряжение.
- Применение автотрансформаторов. С их помощью происходит понижение входного напряжения. При достижении скорости вращения 95-97% от рабочей, происходит переключение. Автотрансформаторы отключаются, а на обмотки подается напряжение сети переменного тока. В результате электродвигатель входит в режим синхронизации. Этот метод технически более сложный и дорогостоящий. А автотрансформаторы часто выходят из строя. Поэтому на практике этот метод редко применяют.
Частотный пуск
Частотный пуск синхронных двигателей применяется для запуска устройств большой мощности (от 1 до 10 МВт) с рабочим напряжением 6, 10 Кв, как в режиме легкого запуска (с вентиляторным характером нагрузки), так и с тяжелым пуском (приводов шаровых мельниц). Для этих целей выпускаются устройства мягкого частотного пуска.
Принцип работы аналогичен высоковольтным и низковольтным устройствам, работающим по схеме преобразователя частоты. Они обеспечивают пусковой момент до 100% от номинала, а также обеспечивают запуск нескольких двигателей от одного устройства. Пример схемы с устройством плавного пуска вы видите ниже, оно включается на время запуска двигателя, а затем выводится из схемы, после чего двигатель включается в сеть напрямую.
Системы возбуждения
До недавнего времени, для возбуждения применялся генератор независимого возбуждения. Он располагался на одном валу с синхронным электродвигателем. Такая схема еще применяется на некоторых предприятиях, но она устарела и теперь не применяется. Сейчас для регулировки возбуждения используются тиристорные возбудители ВТЕ.
- оптимальный режим пуска синхронного двигателя;
- поддержание заданного тока возбуждения в заданных пределах;
- автоматическое регулирование напряжения возбуждения в зависимости от нагрузки;
- ограничение максимального и минимального тока возбуждения;
- мгновенное увеличение тока возбуждения при понижении питающего напряжения;
- гашение поля ротора при отключении от питающей сети;
- контроль состояния изоляции, с оповещением о неисправности;
- обеспечивают проверку состояния обмотки возбуждения при неработающем электродвигателе;
- работают с высоковольтным преобразователем частоты, обеспечивая асинхронный и синхронный запуск.
Эти устройства отличаются высокой надежностью. Основным недостатком является высокая цена.
В заключение отметим, что самый распространенный способ пуска синхронных двигателей – это асинхронный запуск. Практически не нашел применения пуск с помощью дополнительного электродвигателя. В то же время частотный запуск, который позволяет в автоматическом режиме решить проблемы пуска, довольно дорогостоящий.