Газотурбинный двигатель подробно
ИДЕЯ применить в автомобилях газотурбинные двигатели возникла давно. Но лишь за последние несколько лет их конструкция достигла той степени совершенства, которая дает им право на существование.
Высокий уровень развития теории лопаточных двигателей, металлургии и техники производства обеспечивает теперь реальную возможность создания надежных газотурбинных двигателей, способных с успехом заменить на автомобиле поршневые двигатели внутреннего сгорания.
Что представляет собой газотурбинный двигатель?
На рис. показана принципиальная схема такого двигателя. Ротационный компрессор, находящийся на одном валу с газовой турбиной, засасывает воздух из атмосферы, сжимает его и нагнетает в камеру сгорания. Топливный насос, также приводимый в движение от вала турбины, нагнетает топливо в форсунку, установленную в камере сгорания. Газообразные продукты сгорания поступают через направляющий аппарат на рабочие лопатки колеса газовой турбины и заставляют его вращаться в одном, определенном направлении. Газы, отработавшие в турбине, выпускаются в атмосферу через патрубок. Вал газовой турбины вращается в подшипниках.
По сравнению с поршневыми двигателями внутреннего сгорания газотурбинный двигатель обладает весьма существенными преимуществами. Правда, он тоже еще не свободен от недостатков, но они постепенно ликвидируются по мере развития конструкции.
Характеризуя газовую турбину, прежде всего следует отметить, что она, как и паровая турбина, может развивать большие обороты. Это дает возможность получать значительную мощность от гораздо меньших по размерам (по сравнению с поршневыми) и почти в 10 раз более легких по весу двигателей.
Вращательное движение вала является по существу единственным видом движения в газовой турбине, в то время как в двигателе внутреннего сгорания, помимо вращательного движения коленчатого вала, имеет место возвратно-поступательное движение поршня, а также сложное движение шатуна. Газотурбинные двигатели не требуют специальных устройств для охлаждения. Отсутствие трущихся деталей при минимальном количестве подшипников обеспечивают длительную работоспособность и высокую надежность газотурбинного двигателя.
Для питания газотурбинного двигателя используется керосин либо топлива типа дизельных.
Основная причина, которая сдерживает развитие автомобильных газотурбинных двигателей, заключается в необходимости искусственно ограничивать температуру газов, поступающих на лопатки турбины. Это снижает коэффициент полезного действия двигателя и приводит к повышенному удельному расходу топлива (на 1 л. с ). Температуру газа приходится ограничивать для газотурбинных двигателей пассажирских и грузовых автомобилей в пределах 600—700°С, а в авиационных турбинах до 800—900°С потому, что еще очень дороги высокожаропрочные сплавы.
В настоящее время уже существуют некоторые способы повышения коэффициента полезного действия газотурбинных двигателей путем охлаждения лопаток, использования тепла отработавших газов для подогрева поступающего в камеры сгорания воздуха, производства газов в высоко эффективных свободно-поршневых генераторах, работающих по дизель-компрессорному циклу с высокой степенью сжатия и т. д. От успеха работ в этой области во многом зависит решение проблемы создания высокоэкономичного автомобильного газотурбинного двигателя.
Принципиальная схема двухвального газотурбинного двигателя с теплообменником
Большинство существующих автомобильных газотурбинных двигателей построено по так называемой двухвальной схеме с теплообменниками. Здесь для привода компрессора 1 служит специальная турбина 8, а для привода колес автомобиля — тяговая турбина 7. Валы турбин не соединены между собой. Газы из камеры сгорания 2 вначале поступают на лопатки турбины привода компрессора, а затем на лопатки тяговой турбины. Воздух, нагнетаемый компрессором, прежде чем поступить в камеры сгорания, подогревается в теплообменниках 3 за счет тепла, отдаваемого отработавшими газами. Применение двухвальной схемы создает выгодную тяговую характеристику газотурбинных двигателей, позволяющую сократить число ступеней в обычной коробке передач автомобиля и улучшить его динамические качества.
Ввиду того, что вал тяговой турбины механически не связан с валом турбины компрессора, число его оборотов может изменяться в зависимости от нагрузки, не оказывая существенного влияния на число оборотов вала компрессора. Вследствие этого характеристика крутящего момента газотурбинного двигателя имеет вид, представленный на рис., где для сопоставления нанесена также и характеристика поршневого автомобильного двигателя (пунктиром).
Из диаграммы видно, что у поршневого двигателя по мере уменьшения числа оборотов, происходящего под влиянием возрастающей нагрузки, крутящий момент вначале несколько возрастает, а затем падает. В то же время у двухвального газотурбинного двигателя крутящий момент автоматически возрастает по мере увеличения нагрузки. В результате необходимость в переключении коробки передач отпадает либо наступает значительно позже, чем у поршневого двигателя. С другой стороны, ускорения при разгоне у двухвального газотурбинного двигателя будут значительно большими.
Характеристика одновального газотурбинного двигателя отличается от показанной на рис. и, как правило, уступает, с точки зрения требований динамики автомобиля, характеристике поршневого двигателя (при равной мощности).
Принципиальная схема газотурбинного двигателя со свободно-поршневым генератором газа
Большую перспективу имеет газотурбинный двигатель. В этом двигателе газ для турбины вырабатывается в так называемом свободно-поршневом генераторе, представляющем собой двухтактный дизель и поршневой компрессор, объединенные в общем блоке. Энергия от поршней дизеля передается непосредственно поршням компрессора. Ввиду того, что движение поршневых групп осуществляется исключительно под действием давления газов и режим движения зависит только от протекания термодинамических процессов в дизельном и компрессорных цилиндрах, такой агрегат и называется свободно-поршневым. В его средней части расположен открытый с двух сторон цилиндр 4, имеющий прямоточную щелевую продувку, в котором протекает двухтактный рабочий процесс с воспламенением от сжатия. В цилиндре оппозитно перемещаются два поршня, один из которых 9 во время рабочего хода открывает, а во время возвратного хода закрывает выхлопные окна, прорезанные в стенках цилиндра. Другой поршень 3 также открывает и закрывает продувочные окна. Поршни связаны между собой легким реечным или рычажным синхронизирующим механизмом, не показанным на схеме. Когда они сближаются, воздух, заключенный между ними, сжимается; к моменту достижения мертвой точки температура сжимаемого воздуха становится достаточной для воспламенения топлива, которое впрыскивается через форсунку 5. В результате сгорания топлива образуются газы, обладающие высокой температурой и давлением; они заставляют поршни разойтись в стороны, при этом поршень 9 открывает выхлопные окна, через которые газы устремляются в газосборник 7. Затем открываются продувочные окна, через которые в цилиндр 4 поступает сжатый воздух, вытесняет из цилиндра выхлопные газы, смешивается с ними и также поступает в газосборник. За то время, пока продувочные окна остаются открытыми, сжатый воздух успевает очистить цилиндр от выхлопных газов и заполнить его, подготовив таким образом двигатель к следующему рабочему ходу.
С поршнями 3 и 9 связаны компрессорные поршни 2, двигающиеся в своих цилиндрах. При расходящемся ходе поршней идет всасывание воздуха из атмосферы в компрессорные цилиндры, при этом самодействующие впускные клапана 10 открыты, а выпускные 11 закрыты. При встречном ходе поршней впускные клапана закрыты, а выпускные открыты и через них воздух нагнетается в ресивер 6, окружающий дизельный цилиндр. Поршни двигаются навстречу друг другу за счет энергии воздуха, накопившейся в буферных полостях 1 во время предыдущего рабочего хода. Газы из сборника 7 поступают в тяговую турбину 8, вал которой соединен с трансмиссией. Следующее сопоставление коэффициентов полезного действия показывает, что описанный газотурбинный двигатель уже сейчас по своей эффективности не уступает двигателям внутреннего сгорания:
Дизель 0,26—0,35
Двигатель бензиновый 0,22—0,26
Газовая турбина с камерами сгорания постоянного объема без теплообменника 0,12-0,18
Газовая турбина с камерами сгорания постоянного объема с теплообменником 0,15—0,25
Газовая турбина со свободно-поршневым генератором газа 0,25—0,35
Таким образом, КПД лучших образцов турбин не уступает КПД дизелей. Не случайно поэтому количество экспериментальных газотурбинных автомобилей различного типа возрастает с каждым годом. Все новые фирмы в различных странах объявляют о своих работах в этой области.
Схема реального газотурбинного двигателя
Этот двухкамерный двигатель, без теплообменника, имеет эффективную мощность 370 л. с. Топливом для него служит керосин. Скорость вращения вала компрессора достигает 26 000 об/мин, а скорость вращения вала тяговой турбины от 0 до 13 000 об/мин. Температура газов, поступающих на лопатки турбины, равна 815° Ц, давление воздуха на выходе из компрессора — 3,5 ат. Общий вес силовой установки, предназначенной для гоночного автомобиля, составляет 351 кг, причем газопроизводящая часть весит 154 кг, а тяговая часть с коробкой передач и передачей на ведущие колеса — 197 кг.
Схема и принцип действия газотурбинного двигателя
Газотурбинным двигателем (ГТД) согласно стандарту 23851-79 (Авиационные газотурбинные двигатели. М.:Изд-во стандартов,1979.) называют тепловую машину, в которой энергия топлива преобразуется в кинетическую энергию струи и в механическую работу на валу. Основными элементами ГТД являются компрессор, камера сгорания и газовая турбина(рис.3.1).
|
Рис.3.1. Принципиальная схема газотурбинного двигателя:
к – компрессор; кс – камера сгорания; т – газовая турбина;
п – потребитель механической работы; Gт – расход топлива;
В-В – обозначение проходного сечения для воздуха на входе в
компрессор; К-К – то же на выходе из компрессора;
Г-Г – то же для газов на входе в турбину; Т-Т – то же для выхода из
Принцип действия ГТД следующий.
1. Воздух из атмосферы поступает в компрессор (сечение «В-В»), где происходит сжатие воздуха (плотность, давление и температура возрастают). Если компрессор идеальный (трение и теплообмен отсутствуют), то сжатие воздуха осуществляется в адиабатном процессе ( ), показатель адиабаты к=1.4.
Отношение давления воздуха на выходе из компрессора к давлению на входе называется степенью повышения давления в компрессоре: .
2. Из компрессора (сечение «К-К») воздух поступает в камеру сгорания, где при постоянном давлении происходит подвод тепла к потоку воздуха при горении топлива. В результате подогрева в камере сгорания газ на её выходе имеет высокую температуру. Отношение температуры газа на выходе из камеры сгорания к температуре атмосферного воздуха называется степенью подогрева воздуха в двигателе: .
3. Из камеры сгорания газ поступает в турбину (сечение «Г-Г»), где происходит расширение газа (плотность газа уменьшается). Если турбина идеальная, то процесс расширения принимается адиабатным. Показатель адиабаты газа равен 1.33.
В процессе расширения газа в турбине тепловая энергия преобразуется в механическую работу на валу, примерно 2/3 которой направляется для вращения компрессора, а 1/3 направляется потребителю (воздушному винту, для вращения дополнительного компрессора, для вращения электрогенератора и т.п.).
4. Из турбины (сечение «Т-Т») газ направляется в выходной канал двигателя. Таким образом, ГТД представляет собой открытую термодинамическую систему, в которой реализуется цикл Брайтона (рис.2.11, 2.12).
3.2.
Схема и принцип действия турбореактивного двигателя.
Турбореактивным двигателем (или двигателем прямой реакции) в соответствии с ГОСТ 23851-79 называют ГТД, в котором преобладающая часть энергии сгорания топлива преобразуется в кинетическую энергию струи (рис.3.2). ТРД имеет следующие основные элементы: входное устройство, компрессор, камеру сгорания, турбину и выходное устройство.
Во входном устройстве ТРД в полете воздушного судна (ВС) происходит предварительное сжатие набегающего на двигатель воздушного потока (скорость уменьшается, плотность, давление и температура возрастают). В зависимости от скорости полета ВС входные устройства разделяются на дозвуковые ( ), трансзвуковые (
) и сверхзвуковые (
).
Рабочий процесс в компрессоре и камере сгорания ТРД совпадает с таким для ГТД. Расширение газа в турбине происходит до давления больше атмосферного
, уровень которого определяется приближенно из
равенства развиваемой турбиной мощности ( ) и необходимой для вращения компрессора мощности (
). Здесь
расход газа в турбине и расход воздуха в компрессоре;
механическая работа на валу турбины и на валу компрессора. Механическая работа на валу турбины
используется также для привода вспомогательных агрегатов обслуживающих двигатель систем.
В выходном устройстве ТРД осуществляется дальнейшее расширение газа (плотность, давление и температура уменьшаются, а скорость увеличивается). В зависимости от величины скорости истечения газа из реактивного сопла этого элемента ТРД они разделяются на дозвуковые ( ) и сверхзвуковые (
).
Для иллюстрации рабочего процесса ТРД используются диаграммы «давление – удельный объём» и «энтальпия – энтропия» (рис.3.3).
Рис.3.2. Схема турбореактивного двигателя:
1 – входное устройство (воздухозаборник); 2 – компрессор;
3 – камера сгорания; 4 – турбина; 5 – выходное устройство
вх,в,к,г,т,с – обозначения контрольных сечений проточной
|
Рис.3.3. Изображение рабочего процесса ТРД в (а) и
(б)
диаграмма позволяет показать площади фигур, соответствующих механическим работам. Например, площадь фигуры
на рис.3.3(а) эквивалентна работе предварительного сжатия во входном устройстве двигателя
, площадь фигуры
на этом же рисунке соответствует работе сжатия в компрессоре
, где
степень повышения давления во входном устройстве и в компрессоре.
Площадь фигуры эквивалентна работе расширения газа в турбине
, площадь фигуры
эквивалентна работе расширения газа в реактивном сопле выходного устройства
, где
степень понижения (расширения) давления газа в турбине и в реактивном сопле выходного устройства.
диаграмма представляет те же написанные выше механические работы в виде разности энтальпий (теплосодержаний) или отрезков на рис.3.3(б). Например,
количество теплоты, подведенное к потоку воздуха в камере сгорания;
количество теплоты, отведенной в атмосферу с выхлопными газами.
При истечении газа в атмосферу согласно третьему закону Ньютона образуется реактивная сила, называемая тягой ТРД – равнодействующая сил
давления и трения, действующих на внутренние поверхности двигателя. Величина тяги определяется по формуле Б.С. Стечкина:
(3.1)
где тяга ТРД, Н;
расход воздуха через двигатель, кг/с;
средняя скорость истечения газа из реактивного сопла, м/с;
скорость полета ВС.