из пункта А в пункт В вниз по течению реки отправились одновременно моторная лодка и байдарка. скорость течения реки=3 км/ч. последнюю 1/7 часть пути моторная лодка шла с выключенным мотором, и ее скорость относительно берега была равна скорости течения. на той части пути, где моторная лодка шла с включенным мотором, ее скорость была на 2 км/ч больше скорости байдарки. найти скорость байдарки в неподвижной воде, если в пункт В байдарка и лодка прибыли одновременно.
S (км) — весь путь
х (км/ч) — собственная скорость лодки
у (км/ч) — собственная скорость байдарки
На той части пути, где моторная лодка шла с включенным мотором, ее скорость была на 2 км/ч больше скорости байдарки, с.у.
(х + 3) = 2 + у
s : 7 * 3 = 3s/7 (ч) — времени затратила лодка на последнюю 1/7 часть пути, т.к. моторная лодка шла с выключенным мотором, и ее скорость относительно берега была равна скорости течения.
6s/7 (x + 3) (ч) — времени затратила лодка на 6/7 части пути
В пункт В байдарка и лодка прибыли одновременно, с.у.
3s + (x + 3) * 6 = s * y
7 7
Получили систему уравнений
(х + 3) = 2 + у
3s + (x + 3) * 6s = s * y
7 7
3s + (2 + у) * 6s = s * y
7 7
3 + 12 + 6у — 7y = 0
y = 15 (км/ч) — собственная скорость байдарки
Если ответ по предмету Алгебра отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.
Тренировочные текстовые задачи на движения для подготовки к ЕГЭ (11 класса) части 2 задания 11.
Тренировочные текстовые задачи на движения для подготовки к ЕГЭ (11 класса) части 2 з адания 11.
1 .Моторная лодка прошла 80 км от пункта А до пункта В и после трёхчасовой стоянки вернулась обратно, затратив на весь путь 12 часов .Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 2 км/ч. Ответ дайте в км/ч.
Пусть х км/ч – скорость лодки в неподвижной воде
х=-2/9 – не удовлетворяет условию задачи
2. Байдарка в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 45 минут, байдарка отправилась назад и вернулась в пункт А в 16:00 того же дня. Определите (в км/ч) собственную скорость байдарки, если известно, что скорость течения реки равна 3 км/ч.
Решение: Легко понять, что плыла байдарка всего 16-10-1 1 / 3= 4 2/ 3 (ч)
Составим по условию задачи уравнение и решаем 15/(х+3)+15/(х-3)=14/3
х 2 = -4/7 км/ч – не удовлетворяет условию задачи.
3. Из А в В одновременно выехали два автомобиля. Первый весь путь проехал с постоянной скоростью. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 16 км/ч, а вторую половину пути – со скоростью 96 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 57 км/ч. Ответ дайте в км/ч.
Решение: Поскольку речь в задаче идёт о половинах пути, весь путь удобно принять за 2. Тогда половина пути 1 и х км/ч – скорость первого автомобиля.
По условию подходит большее значение скорости, равное 64 км/ч.
4 .Моторная лодка прошла против течения реки 120 км и вернулась в пункт отправления, затратив на обратный путь на 2 ч меньше времени. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.
Решение: Примем скорость лодки в неподвижной (стоячей) воде за х км/ч, тогда её скорость по течению (х+1) км/ч, а против течения (х-1) км/ч.
120(х+1)-120(х-1)=2(х 2 -1)
5. Теплоход проходит по течению реки до пункта назначения 315 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 18 км/ч, стоянка длится 6 ч, а в пункт отправления теплоход возвращается через 42 ч после попытки из него. Ответ дайте в км/ч.
Решение: Скорость течения х км/ч. Скорость теплохода по течению (18+х) км/ч, а против течения – (18-х) км/ч
315/(18+х) – время теплохода по течению
315/(18-х) – время теплохода против течения
6. Теплоход отошёл от пристани одновременно с плотом и прошёл вниз по реке 42 км. Сделав остановку на 1 час, он двинулся обратно вверх по реке. Пройдя 12 км, он встретился с плотом. Во сколько раз собственная скорость теплохода больше скорости течения реки, если скорость течения реки равна 4 км/ч?
Решение: х – собственная скорость теплохода
К моменту встречи теплохода с плотом плот прошёл 30 км за 30/4 =7,5 часов. Получаем уравнение: 42/(х+4)+1+12/(х-4)=7,5
х 2 =8 По смыслу задачи скорость теплохода больше скорости течения, тогда скорость теплохода равна 8, то есть в 2 раза больше скорости течения.
7 .Теплоход проходит от пристани А до пристани В по течению реки за 3 ч, а против течения за 4 ч. За сколько часов проплывёт это расстояние плот?
Решение: Пусть х км/ч – собственная скорость теплохода, у км/ч – скорость течения реки, S км – расстояние от пристани А до пристани В.
По условию S =3(х+у), S =4(х-у), требуется найти S /у
3(х+у)=4(х-у), х=7у, S =3(х+у)=24у, тогда S /у=24
8. Расстояние между двумя городами 180 км. Рейсовый автобус проходит это расстояние на 27 минут медленнее маршрутного такси. Если скорость автобуса увеличить на 10 км/ч, а маршрутного такси уменьшить на 10 км/ч, то они будут проходить это расстояние за равное время. Определите первоначальную скорость автобуса.
Решение: х км/ч –первоначальная скорость автобуса, у км/ч – скорость маршрутного такси.180/х – время автобуса, 180/у – время такси. Из условия следует, что автобус был в пути на 27 мин дольше. 180/х-180/у=27/60=9/20
После изменения скорости автобус прошёл 180 км – за 180/(х+10) ч, а маршрутное такси – за 180/(у-10) Из условии следует, что 180/(х+10)=180/(у-10) Решаем систему уравнений. у=х+20 и 20/х – 20/(х+20)=1/20 отсюда: х+20-х=(х 2 +20х)/400; х 2 +20х-8000=0
х 1 =-100 х 2 =80 По смыслу задачи х>0, значит искомое значение скорости автобуса равно 80 км/ч. Ответ: 80.
9.Велосипедист ехал из А в В со скоростью 15 км/ч, а возвращался назад со скоростью 10 км/ч. Какова средняя скорость велосипедиста на всём участке?
Решение: Решим задачу с помощью «лишнего» неизвестного. Пусть – х км – расстояние от А до В, тогда х/15+х/10=х/6 ч затрачено на путь туда и обратно. Вычислим среднюю скорость, поделив пройденный путь на время движения: 2х:х/6=2х*6/х=12 (км/ч)
10 .Из пункта А и В навстречу друг другу в 11:00 вышли два поезда. Двигаясь с постоянными скоростями, они встретились в 12:00, после чего продолжили движение. В 13:15 первый поезд прибыл в пункт В. Сколько минут был в пути второй поезд? (ОтветJ
11 .Теплоход, скорость которого в неподвижной воде равна 15 км/ч, проходит по течению реки до пункта назначения и после стоянки возвращается в исходный пункт. Найдите расстояние, пройденное теплоходом за весь рейс, если скорость течения равна 3 км/ч, стоянка длится 2 часа, а в исходный пункт теплоход возвращается через 12 часов после отплытия из него. Ответ дайте в километрах. (Ответ: 144)
12 .Катер в 10:00 вышел из пункта А в пункт В, расположенный в 15 км от А. пробыв в пункте В 4 часа, катер отправился назад и вернулся в пункт А в 18:00 того же дня. Определите (в км/ч) собственную скорость катера, если известно, что скорость течения реки равна 2 км/ч.
13. Моторная лодка прошла путь от пункта А до пункта В и обратно без остановок за 9 часов. Найдите расстояние между пунктами А и В, если скорость лодки в неподвижной воде равна 18 км/ч, а скорость течения равна 2 км/ч. Ответ дайте в километрах. (Ответ; 80)
14. Товарный поезд, идущий со скоростью 30 км/ч, проезжает мимо придорожного столба за 36 секунд. Определите длину поезда (в метрах) (Ответ:300)
15 .Первую половину трассы автомобиль проехал со скоростью 90 км/ч, а вторую – со скоростью – 60 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч. (Ответ: 72)
16. Велосипедист проехал с постоянной скоростью из города А в город В , расстояние до которого равно 120 км. Возвращался из пункта А на следующий день он со скоростью, на 2 км/ч большей прежней. По дороге он сделал остановку на 2 ч. В результате на обратный путь он затратил столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В, Ответ дайте в км/ч. (Ответ: 10)
17 .Два велосипедиста одновременно отправились в 96- километровый пробег. Первый ехал со скоростью, на 4 км/ч большей, чем скорость второго, и прибыл к финишу на 4 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч. (Ответ:)
18. Теплоход проходит по течению реки до пункта назначения 255 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 1 км/ч, стоянка длится 2 ч, а в пункт отправления теплоход возвращается через 34 ч после отплытия из него. Ответ дайте в км/ч. (Ответ: 16)
19. Катер в 11:00 вышел из пункта А в пункт В, расположенный в 30 км от А. Пробыв в пункте В 2 ч 40 мин, катер отправился назад и вернулся в пункт А в 19:00. Определите (в км/ч) скорость течения реки, если известно, что собственная скорость катера равна 12 км/ч. (Ответ: 3)
20 .Моторная лодка прошла против течения 24 км и вернулась обратно, затратив на обратный путь на 20 мин меньше, чем при движении против течения. Найдите скорость (в км/ч) лодки в неподвижной воде, если скорость течения равна 3 км/ч. (Ответ: 21)
21 .Два автомобиля отправляются в 420 – километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 1 час раньше второго. Найдите скорость автомобиля, пришедшего к финишу первым. (Ответ: 60)
22 .Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 60 км/ч, а вторую половину времени – со скоростью 46 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. (Ответ: 57 )
23 .Теплоход, скорость которого в неподвижной воде равна 20 км/ч, проходит по течению реки до пункта назначения и после стоянки возвращается в исходный пункт. Найдите расстояние, пройденное теплоходом за весь рейс, если скорость течения равна 4 км/ч, стоянка длится 3 часа, а в исходный пункт теплоход возвращается через 13 часов после отплытия из него. Ответ дайте в километрах. (Ответ: 192.)
24 .Города А, В и С соединены прямолинейным шоссе, причём город В расположен между городами А и С. Из города А в сторону города С выехал легковой автомобиль, и одновременно с ним из города В в сторону города С выехал грузовик. Через сколько часов после выезда легковой автомобиль догонит грузовик, если скорость легкового автомобиля на 28 км/ч больше скорости грузовика, а расстояние между городами А и В равно 112 км? (Ответ: 4 )
25 .Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 90 км/ч, а вторую половину времени – со скоростью 60 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч (Ответ: 75)
26 .Велосипедист отправился на дорогу и должен вернуться не позднее чем через 7 часов после выезда. На какое наибольшее от места старта он может удалиться, если его скорость 15 км/ч, а обратно его подвезут на машине, скорость которой равна 90 км/ч? Ответ дайте в километрах. (Ответ: 90)
27 .Из пункта А круговой трассы, длина которой равна 30 км, одновременно в одном направлении стартовали два автомобилиста. Скорость первого равна 92 км/ч, скорость второго – 77 км/ч. Через сколько минут первый автомобилист будет опережать второго ровно на 1 круг? (Ответ: 120)
28 . Из пункта А в пункт В вниз по течению реки отправились одновременно моторная лодка и байдарка. Скорость течения реки равна 3 км/ч. Последнюю 1/7 часть пути моторная лодка шла с выключенным мотором, и её скорость относительно была равна скорости течения. На той части пути, где моторная лодка с выключенным мотором, её скорость была на 2 км/ч больше скорости байдарки. Найдите скорость байдарки в неподвижной воде, если в пункт В байдарка и моторная лодка прибыли одновременно. (Ответ: 4)
Школе NET
Register
Do you already have an account? Login
Login
Don’t you have an account yet? Register
Newsletter
Submit to our newsletter to receive exclusive stories delivered to you inbox!
Зачетный Опарыш
из пункта А в пункт В вниз по течению реки отправились одновременно моторная лодка и байдарка. скорость течения реки=3 км/ч. последнюю 1/7 часть пути моторная лодка шла с выключенным мотором, и ее скорость относительно берега была равна скорости течения. на той части пути, где моторная лодка шла с включенным мотором, ее скорость была на 2 км/ч больше скорости байдарки. найти скорость байдарки в неподвижной воде, если в пункт В байдарка и лодка прибыли одновременно.
Лучший ответ:
Васян Коваль
S (км) — весь путь
х (км/ч) — собственная скорость лодки
у (км/ч) — собственная скорость байдарки
На той части пути, где моторная лодка шла с включенным мотором, ее скорость была на 2 км/ч больше скорости байдарки, с.у.
(х 3) = 2 у
s : 7 * 3 = 3s/7 (ч) — времени затратила лодка на последнюю 1/7 часть пути, т.к. моторная лодка шла с выключенным мотором, и ее скорость относительно берега была равна скорости течения.
6s/7 (x 3) (ч) — времени затратила лодка на 6/7 части пути
В пункт В байдарка и лодка прибыли одновременно, с.у.
3s (x 3) * 6 = s * y
7 7
Получили систему уравнений
(х 3) = 2 у
3s (x 3) * 6s = s * y
7 7
3s (2 у) * 6s = s * y
7 7
3 (2 у) * 6 — 7y = 0
7
3 12 6у — 7y = 0
y = 15 (км/ч) — собственная скорость байдарки
Тренировочные текстовые задачи на движения для подготовки к ЕГЭ (11 класса) части 2 задания 11.
Тренировочные текстовые задачи на движения для подготовки к ЕГЭ (11 класса) части 2 з адания 11.
1 .Моторная лодка прошла 80 км от пункта А до пункта В и после трёхчасовой стоянки вернулась обратно, затратив на весь путь 12 часов .Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 2 км/ч. Ответ дайте в км/ч.
Пусть х км/ч – скорость лодки в неподвижной воде
х=-2/9 – не удовлетворяет условию задачи
2. Байдарка в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 45 минут, байдарка отправилась назад и вернулась в пункт А в 16:00 того же дня. Определите (в км/ч) собственную скорость байдарки, если известно, что скорость течения реки равна 3 км/ч.
Решение: Легко понять, что плыла байдарка всего 16-10-1 1 / 3= 4 2/ 3 (ч)
Составим по условию задачи уравнение и решаем 15/(х+3)+15/(х-3)=14/3
х 2 = -4/7 км/ч – не удовлетворяет условию задачи.
3. Из А в В одновременно выехали два автомобиля. Первый весь путь проехал с постоянной скоростью. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 16 км/ч, а вторую половину пути – со скоростью 96 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 57 км/ч. Ответ дайте в км/ч.
Решение: Поскольку речь в задаче идёт о половинах пути, весь путь удобно принять за 2. Тогда половина пути 1 и х км/ч – скорость первого автомобиля.
По условию подходит большее значение скорости, равное 64 км/ч.
4 .Моторная лодка прошла против течения реки 120 км и вернулась в пункт отправления, затратив на обратный путь на 2 ч меньше времени. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.
Решение: Примем скорость лодки в неподвижной (стоячей) воде за х км/ч, тогда её скорость по течению (х+1) км/ч, а против течения (х-1) км/ч.
120(х+1)-120(х-1)=2(х 2 -1)
5. Теплоход проходит по течению реки до пункта назначения 315 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 18 км/ч, стоянка длится 6 ч, а в пункт отправления теплоход возвращается через 42 ч после попытки из него. Ответ дайте в км/ч.
Решение: Скорость течения х км/ч. Скорость теплохода по течению (18+х) км/ч, а против течения – (18-х) км/ч
315/(18+х) – время теплохода по течению
315/(18-х) – время теплохода против течения
6. Теплоход отошёл от пристани одновременно с плотом и прошёл вниз по реке 42 км. Сделав остановку на 1 час, он двинулся обратно вверх по реке. Пройдя 12 км, он встретился с плотом. Во сколько раз собственная скорость теплохода больше скорости течения реки, если скорость течения реки равна 4 км/ч?
Решение: х – собственная скорость теплохода
К моменту встречи теплохода с плотом плот прошёл 30 км за 30/4 =7,5 часов. Получаем уравнение: 42/(х+4)+1+12/(х-4)=7,5
х 2 =8 По смыслу задачи скорость теплохода больше скорости течения, тогда скорость теплохода равна 8, то есть в 2 раза больше скорости течения.
7 .Теплоход проходит от пристани А до пристани В по течению реки за 3 ч, а против течения за 4 ч. За сколько часов проплывёт это расстояние плот?
Решение: Пусть х км/ч – собственная скорость теплохода, у км/ч – скорость течения реки, S км – расстояние от пристани А до пристани В.
По условию S =3(х+у), S =4(х-у), требуется найти S /у
3(х+у)=4(х-у), х=7у, S =3(х+у)=24у, тогда S /у=24
8. Расстояние между двумя городами 180 км. Рейсовый автобус проходит это расстояние на 27 минут медленнее маршрутного такси. Если скорость автобуса увеличить на 10 км/ч, а маршрутного такси уменьшить на 10 км/ч, то они будут проходить это расстояние за равное время. Определите первоначальную скорость автобуса.
Решение: х км/ч –первоначальная скорость автобуса, у км/ч – скорость маршрутного такси.180/х – время автобуса, 180/у – время такси. Из условия следует, что автобус был в пути на 27 мин дольше. 180/х-180/у=27/60=9/20
После изменения скорости автобус прошёл 180 км – за 180/(х+10) ч, а маршрутное такси – за 180/(у-10) Из условии следует, что 180/(х+10)=180/(у-10) Решаем систему уравнений. у=х+20 и 20/х – 20/(х+20)=1/20 отсюда: х+20-х=(х 2 +20х)/400; х 2 +20х-8000=0
х 1 =-100 х 2 =80 По смыслу задачи х>0, значит искомое значение скорости автобуса равно 80 км/ч. Ответ: 80.
9.Велосипедист ехал из А в В со скоростью 15 км/ч, а возвращался назад со скоростью 10 км/ч. Какова средняя скорость велосипедиста на всём участке?
Решение: Решим задачу с помощью «лишнего» неизвестного. Пусть – х км – расстояние от А до В, тогда х/15+х/10=х/6 ч затрачено на путь туда и обратно. Вычислим среднюю скорость, поделив пройденный путь на время движения: 2х:х/6=2х*6/х=12 (км/ч)
10 .Из пункта А и В навстречу друг другу в 11:00 вышли два поезда. Двигаясь с постоянными скоростями, они встретились в 12:00, после чего продолжили движение. В 13:15 первый поезд прибыл в пункт В. Сколько минут был в пути второй поезд? (ОтветJ
11 .Теплоход, скорость которого в неподвижной воде равна 15 км/ч, проходит по течению реки до пункта назначения и после стоянки возвращается в исходный пункт. Найдите расстояние, пройденное теплоходом за весь рейс, если скорость течения равна 3 км/ч, стоянка длится 2 часа, а в исходный пункт теплоход возвращается через 12 часов после отплытия из него. Ответ дайте в километрах. (Ответ: 144)
12 .Катер в 10:00 вышел из пункта А в пункт В, расположенный в 15 км от А. пробыв в пункте В 4 часа, катер отправился назад и вернулся в пункт А в 18:00 того же дня. Определите (в км/ч) собственную скорость катера, если известно, что скорость течения реки равна 2 км/ч.
13. Моторная лодка прошла путь от пункта А до пункта В и обратно без остановок за 9 часов. Найдите расстояние между пунктами А и В, если скорость лодки в неподвижной воде равна 18 км/ч, а скорость течения равна 2 км/ч. Ответ дайте в километрах. (Ответ; 80)
14. Товарный поезд, идущий со скоростью 30 км/ч, проезжает мимо придорожного столба за 36 секунд. Определите длину поезда (в метрах) (Ответ:300)
15 .Первую половину трассы автомобиль проехал со скоростью 90 км/ч, а вторую – со скоростью – 60 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч. (Ответ: 72)
16. Велосипедист проехал с постоянной скоростью из города А в город В , расстояние до которого равно 120 км. Возвращался из пункта А на следующий день он со скоростью, на 2 км/ч большей прежней. По дороге он сделал остановку на 2 ч. В результате на обратный путь он затратил столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В, Ответ дайте в км/ч. (Ответ: 10)
17 .Два велосипедиста одновременно отправились в 96- километровый пробег. Первый ехал со скоростью, на 4 км/ч большей, чем скорость второго, и прибыл к финишу на 4 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч. (Ответ:)
18. Теплоход проходит по течению реки до пункта назначения 255 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 1 км/ч, стоянка длится 2 ч, а в пункт отправления теплоход возвращается через 34 ч после отплытия из него. Ответ дайте в км/ч. (Ответ: 16)
19. Катер в 11:00 вышел из пункта А в пункт В, расположенный в 30 км от А. Пробыв в пункте В 2 ч 40 мин, катер отправился назад и вернулся в пункт А в 19:00. Определите (в км/ч) скорость течения реки, если известно, что собственная скорость катера равна 12 км/ч. (Ответ: 3)
20 .Моторная лодка прошла против течения 24 км и вернулась обратно, затратив на обратный путь на 20 мин меньше, чем при движении против течения. Найдите скорость (в км/ч) лодки в неподвижной воде, если скорость течения равна 3 км/ч. (Ответ: 21)
21 .Два автомобиля отправляются в 420 – километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 1 час раньше второго. Найдите скорость автомобиля, пришедшего к финишу первым. (Ответ: 60)
22 .Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 60 км/ч, а вторую половину времени – со скоростью 46 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. (Ответ: 57 )
23 .Теплоход, скорость которого в неподвижной воде равна 20 км/ч, проходит по течению реки до пункта назначения и после стоянки возвращается в исходный пункт. Найдите расстояние, пройденное теплоходом за весь рейс, если скорость течения равна 4 км/ч, стоянка длится 3 часа, а в исходный пункт теплоход возвращается через 13 часов после отплытия из него. Ответ дайте в километрах. (Ответ: 192.)
24 .Города А, В и С соединены прямолинейным шоссе, причём город В расположен между городами А и С. Из города А в сторону города С выехал легковой автомобиль, и одновременно с ним из города В в сторону города С выехал грузовик. Через сколько часов после выезда легковой автомобиль догонит грузовик, если скорость легкового автомобиля на 28 км/ч больше скорости грузовика, а расстояние между городами А и В равно 112 км? (Ответ: 4 )
25 .Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 90 км/ч, а вторую половину времени – со скоростью 60 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч (Ответ: 75)
26 .Велосипедист отправился на дорогу и должен вернуться не позднее чем через 7 часов после выезда. На какое наибольшее от места старта он может удалиться, если его скорость 15 км/ч, а обратно его подвезут на машине, скорость которой равна 90 км/ч? Ответ дайте в километрах. (Ответ: 90)
27 .Из пункта А круговой трассы, длина которой равна 30 км, одновременно в одном направлении стартовали два автомобилиста. Скорость первого равна 92 км/ч, скорость второго – 77 км/ч. Через сколько минут первый автомобилист будет опережать второго ровно на 1 круг? (Ответ: 120)
28 . Из пункта А в пункт В вниз по течению реки отправились одновременно моторная лодка и байдарка. Скорость течения реки равна 3 км/ч. Последнюю 1/7 часть пути моторная лодка шла с выключенным мотором, и её скорость относительно была равна скорости течения. На той части пути, где моторная лодка с выключенным мотором, её скорость была на 2 км/ч больше скорости байдарки. Найдите скорость байдарки в неподвижной воде, если в пункт В байдарка и моторная лодка прибыли одновременно. (Ответ: 4)