Газотурбинный двигатель принцип работы
Газотурбинный двигатель: принцип работы и конструкция
Газотурбинный двигатель – это то, что в последнее время используется как энергетическая установка для машины.
И это связано не только с несомненными преимуществами данного агрегата.
Газотурбинный двигатель способен развить мощность, которая просто необходима некоторым автомобилям.
Конструкция
Благодаря тому, что у этого агрегата отсутствуют возвратно-поступательно двигающиеся части, а также тому, что его ротор обладает высокой частотой вращений, можно существенно уменьшить габаритные размеры и удельную массу этого двигателя (если сравнивать с дизелем). А это, в свою очередь, позволяет рассмотреть его как перспективный агрегат. Итак, чтобы создать газотурбинный двигатель своими руками (данным процессом интересуются многие – это реально, однако весьма трудно), нужно иметь турбины, камеру сгорания и компрессор. Также в его комплектацию входят стартер, масляный насос, регулятор частоты вращений и другое оборудование. Как правило, в автомобильных двигателях газотурбинного типа применяется центробежный одноступенчатый компрессор, при помощи которого давление воздуха увеличивается в 3,5 раза. Чтобы достичь указанного давления, нужно, чтобы компрессорное колесо вращалось с как можно большей скоростью. А она составляет около 420-450 метров в секунду.
Материалы
Для изготовления камеры сгорания чаще всего используется листовой жаростойкий материал. Газотурбинный двигатель в своей комплектации имеет осевую и центростремительную турбины. Они же состоят из рабочего колеса и соплового аппарата. Газ в осевой турбине, проходя по каналам, которые находятся в рабочем колесе, изменяет направление своего движения. При этом оказывается давление на лопатки. Благодаря этому образуется сила, которая приводит во вращение рабочее колесо.
Газотурбинный двигатель: принцип работы устройства
Компрессорный вал при помощи стартера приводится в движение. Пусковая частота вращения составляет 2530% от номинальной. Сжатый воздух подается компрессором в камеру сгорания, а в неё через форсунку нагнетается топливо с помощью шестеренчатого насоса. После этого посредством электрической свечи накаливания поджигается горючее. И как только устойчивая зона горения образована, последующее горючее воспламеняется от соприкосновения с огнем, а отработанные газы затем уходят в атмосферу через выпускную трубу.
Отличительные свойства
Хочется отметить, что газотурбинный двигатель обладает еще и высочайшими пусковыми качествами. Несмотря на то, что его стартер имеет достаточно небольшую производительность, он может обеспечить пуск при абсолютно любой температуре внешней среды. Это очень хорошее качество.
И еще одно его существенное преимущество – достаточно малая токсичность газов, которые отрабатываются двигателем: она в 37 раз меньше тех, которые извергает дизель. Из этого можно сделать вывод, что такой двигатель еще и безопасен для окружающей среды.
Принцип работы газотурбинного двигателя
Газотурбинный двигатель (ГТД) представляет собой разновидность теплового двигателя, в конструкции которого имеются лопаточные машины. Особенностью работы является то, что превращение энергии горящего топлива в механическую работу происходит в нем непрерывно.
В ГТД составные части рабочего цикла, включающего сжатие воздуха, отвод теплоты к рабочему телу и расширение, разобщены между собой и протекают в разных местах.
Газотурбинный двигатель может быть использован в качестве теплового двигателя на газотурбовозах и самолетах.
Газотурбинный двигатель может работать на любом виде и сорте топлива (жидкое, твердое и газообразное).
На сегодняшний день известно много конструкций и схем ГТД, отличающихся друг от друга следующими параметрами:
• условиями сжигания топлива — с внутренним и внешним сжиганием;
• использованием рабочего тела в круговом процессе — разомкнутые и замкнутые системы;
• количеством валов — одновальные, двух- и многовальные.
Рис. 2. Принципиальная схема одновального газотурбинного двигателя:
1 — корпус газовой турбины; 2 — рабочее колесо газовой турбины; 3 — топливный насос; 4 — свободный вал; 5— воздушный компрессор; 6 — воздухозаборное устройство воздушного компрессора; 7— электрическая свеча зажигания; 8— камера сгорания; 9 — направляющий аппарат; 10 — газоотвод; II — потребитель мощности; 12 — пусковой двигатель
В установках СПГГ обычно используется низкосортное топливо. Турбина работает на газе с относительно невысокой температурой (500. 600 °С), поэтому для изготовления лопаток может быть использован менее жаропрочный материал. КПД таких установок достигает 35 %, однако они имеют увеличенную массу и габариты по сравнению с дизелями с газотурбинным наддувом.
Экономичность работы ГГД можно улучшить за счет повышения температуры газов перед турбиной, использования многовальных систем, применения регенерации и утилизации теплоты уходящих газов (например, для отопления и кондиционирования воздуха в вагонах), применения промежуточного охлаждения воздуха при сжатии и промежуточного подвода теплоты к газу при его расширении. Обеспечение этих мероприятий требует применения жаропрочных сталей для лопаток турбины, использования металлокерамических материалов, воздушного охлаждения части турбины. При этом КГТД действующих установок повышается до 33. 40 %.
Существуют проектные разработки и попытки создания локомотивных газотурбинных двигателей на твердом или пылевидном топливе.
Газотурбинная установка компактна, обладает малой массой на единицу мощности, не содержит деталей с возвратно-поступательным движением, которое приводит к более быстрому износу двигателя, отличается малыми затратами на содержание оборудования. Она может работать без потребления воды, в ней легко полная автоматизация процессов, имеется реальная возможность для сжигания в камере сгорания различных видов топлива, а также имеет относительно постоянный вращающий момент на валу отбора мощности.
Особенность ГТД, применяемых в авиации, является то, что энергия сгорания топлива преобразуется в энергию истечения газов, которые с большой скоростью через выпускную систему ГТД выбрасываются в атмосферу. Тяга при работе этих двигателей возникает за счет разности количеств движения (произведения массы на скорость), выходящего из выпускной системы газовоздушного потока и входящего в приемное устройство ГТД воздуха. Тяга направлена при этом в сторону, противоположную направлению истечения газов, т. е. является реактивной. Нетрудно представить себе, что для увеличения тяги реактивного двигателя необходимо увеличить разность количеств движения, т. е. на выходе из ГТД произведение массы на скорость должно значительно превышать такую же величину на входе. Решению этой задачи служат все элементы конструкции ГТД.
Существуют три типа газотурбинных двигателей: турбореактивные, турбореактивные двухконтурные и турбовинтовые. Рассмотрим принцип работы каждого типа двигателя.
Сфера использования газотурбинных двигателей
На сегодняшний день существует несколько различных видов двигателей, которые отличаются друг от друга по принципу работы. Один из них — газотурбинный двигатель. Он создан таким образом, что, переняв все ключевые достоинства бензиновых и дизельных поршневых двигателей, получил ряд неоспоримых преимуществ.
Газотурбинный двигатель, принцип работы которого заключается в проведении топлива через ряд турбинных лопастей, приводит их в движение с помощью расширяющегося газа. Он относится к моделям внутреннего сгорания. Газотурбинные двигатели делятся на одно- и двухвальные. Их КПД прямо пропорционален температуре сгорания топлива. Самые элементарные модели — одновальные, имеющие единственную турбину. Двухвальные не только сложнее в устройстве, но и способны выдерживать большие нагрузки.
Как правило, газотурбинные двигатели используются в грузовых автомобилях, кораблях и локомотивах. Производятся опыты по разработке таких механизмов для легковых автомобилей.
В настоящее время существует большое количество моделей таких двигателей, многие из которых значительно превосходят своих предшественников большей производительностью, меньшими размерами, габаритами и весом. Также газотурбинный двигатель является более безопасным и нейтральным для окружающей среды. Он производит меньше шума и вибрации, а также расходует намного меньше топлива. Это основные преимущества, которыми обладает газотурбинный двигатель.
Именно газотурбинные механизмы подарили человечеству множество современных возможностей. Без них не существовали бы трансконтинентальные перекачки газа и перелеты больших авиалайнеров на большие расстояния. Газотурбинный двигатель способен вырабатывать огромное количество энергии с минимальными затратами топливных ресурсов. Он представляет собой самую сложную технологическую конструкцию среди всех, что были разработаны за прошедший век.
Итак, газотурбинный двигатель являет собой одно из самых грандиозных открытий двадцатого века, благодаря которому человечество получило колоссальные возможности для совершенствования технологий. Особенно ценным вкладом данной разработки становится то, что она позволяет экономить топливные ресурсы и практически не несет вреда окружающей среде, что крайне важно в наше время глобальных экологических кризисов.
Особенности конструкции газотурбинных двигателей
В. М. Корнеев
Книга может оказаться полезной при изучении особенностей конструкции и эксплуатации авиационных газотурбинных двигателей.
Оглавление
- Конструкция газотурбинных двигателей
Приведённый ознакомительный фрагмент книги Особенности конструкции газотурбинных двигателей предоставлен нашим книжным партнёром — компанией ЛитРес.
© В. М. Корнеев, 2019
Создано в интеллектуальной издательской системе Ridero
Конструкция газотурбинных двигателей
Общие сведения о ГТД
Краткая история создания отечественных авиационных ГТД
Первые проекты воздушно-реактивных двигателей (ВРД) были разработаны в России еще во второй половине XIX века. Инженером И. И. Третеским в 1849 г. предложено использовать для передвижения аэростата силу реакции, возникающую при истечении сжатого воздуха. Несколько позже, в 1866 г., Н. М. Соковнин разработал проект компрессорного ВРД, предназначенного для дирижабля. В 1867 г. Н. Телешов изобрел двигатель «Теплородный духомет», содержащий все основные части современного ВРД.
Первый работающий турбинный двигатель создан в России в конце XIX века. В период с 1886 по 1892 гг. инженер П. Д. Кузьминский разработал, построил и провел испытания в Петербурге газопаротурбинного двигателя, в котором процесс подвода тепла к рабочему телу протекал при постоянном давлении. Двигатель П. Д. Кузьминского имел многоступенчатую радиальную турбину с концентрически расположенными сопловыми и рабочими лопатками. В 1890 г. П. Д. Кузьминский впервые предложил использовать газовую турбину в авиации.
Русским инженером В. В. Караводиным в 1906 г. запатентован «Аппарат для получения пульсирующей струи газа значительной скорости вследствие периодических взрывов горючей смеси». Во время второй мировой войны в Германии были построены пульсирующие ВРД, устанавливаемые на самолетах-снарядах (ФАУ-1) и работающие по предложенной В. В. Караводиным схеме.
В 1909 г. Н. В. Герасимов получил патент на двигатель, имеющий все основные элементы современного турбореактивного двигателя (ТРД). Схему турбовинтового двигателя (ТВД), в котором воздушный винт имел привод от газовой турбины, впервые разработал М. Н. Никольский в 1913 г. Модель этого двигателя была построена и испытана. Его предполагали использовать для самолета «Илья Муромец».
В 1949 г. создан ТРД с центробежным компрессором ВК-1 конструкции В. Я. Климова, имеющий наибольшую в мире тягу (27 кН) при минимальном удельном расходе топлива (0,104 кг/Н-ч) и удельном весе, равном 0,32. Этот двигатель был установлен на фронтовых истребителях и бомбардировщиках взамен РД-45, а в начале 50-х годов использован на скоростном почтово-грузовом гражданском самолете Ил-20. Последующий вариант этого двигателя с форсажной камерой ВК-1Ф, созданный в 1951 г., развивал тягу на форсажном режиме 33 кН и был установлен на фронтовом истребителе МИГ-17.
Первый отечественный ТРД с осевым компрессором ТР-1 конструкции А. М. Люлька прошел государственные испытания в 1947 г. Двигатель РД-9Б с форсажной камерой, созданный в 1952 г. под руководством С. К. Туманского, убедительно доказал преимущества ТРД с осевым компрессором перед ТРД с центробежным компрессором. Он обеспечил возможность создания первого в СССР серийного сверхзвукового истребителя МИГ-19 (1954 г.) с максимальной скоростью полета 1450 км/ч. Двухвальный ТРДФ с осевым компрессором Р11Ф-300 конструкции С. К. Туманского, на котором достигнута весьма высокая степень форсирования тяги, был применен на сверхзвуковых истребителях МИГ-21 (1958 г.), принятых на вооружение не только в СССР, но и в ряде других стран.
Параллельно с разработкой двигателей для сверхзвуковых истребителей советские конструкторы принимали энергичные меры по созданию новых ГТД с большой тягой и низким удельным расходом топлива для дальних бомбардировщиков и самолетов гражданской авиации. Конструкторским коллективом под руководством А. А. Микулина еще в 1946—1947 гг. создано несколько опытных двигателей большой тяги (ТКРД с тягой 37 кН, затем ТРД с тягой 47 кН), а в 1951 г. построен серийный турбореактивный двигатель АМ-3, имеющий наибольшую в мире тягу 86 кН. Двигатель АМ-3 в начале 50-х годов был установлен на дальнем бомбардировщике Ту-16, а его модифицированный вариант РД-ЗМ (максимальная стендовая тяга 95 кН) — на первом турбореактивном пассажирском самолете Ту-104, вышедшим на воздушные трассы в 1956 г. Наряду с турбореактивными двигателями в СССР созданы первоклассные ТВД для пассажирских и транспортных самолетов. Так, турбовинтовой двигатель НК-12МВ конструкции Н. Д. Кузнецова, работа по созданию которого были начаты еще в 1954 г., вплоть до настоящего времени не имеет себе равных в мире среди ТВД по мощности и экономичности (взлетная мощность более 11000 кВт, удельный расход топлива 0,28 кг/кВт-ч). Двигателями НК-12МВ вначале оборудовали пассажирский самолет Ту-114, а позднее — транспортный самолет Ан-22, «Антей», на котором в октябре 1967 г. был поднят самый большой для того времени груз (более 100 т на высоту 7848 м).
ТВД АИ-20 конструкции А. Г. Ивченко, заложенный в опытное производство с 1956 г., получил широкое применение на высокоэкономичных пассажирских самолетах Ил-18 и Ан-10, которые внесли основной вклад в обеспечение рентабельности воздушных перевозок. Двигатель АИ-20 имел наибольший для своего времени межремонтный ресурс (4000 ч, а отдельные экземпляры до 6000… 8000 ч) и высокую безотказность, достигающую уровня лучших мировых образцов ГТД данного класса. На базе двигателя АИ-20 конструкторским коллективом, руководимым А. Г. Ивченко, создан ТВД АИ-24, имеющий примерно в 1,7 раза меньшую мощность и установленный на самолет Ан-24, который до настоящего времени выполняет основной объем пассажирских перевозок на местных воздушных линиях.
Первым в нашей стране серийным ТРДД был двигатель Д-20П, созданный в 1960 г. под руководством П. А. Соловьева для пассажирского самолета Ту-124. В дальнейшем конструкторским коллективом, возглавляемым П. А. Соловьевым, построены ТРДД Д-30, Д-З0КП и Д-З0КУ, установленные на широко известные самолеты Ту-134, Ил-76 и Ил-62М.
Коллективом генерального конструктора Н. Д. Кузнецова в 60-х годах разработаны и построены оригинальные ТРДД семейства НК-8, примененные на скоростных пассажирских самолетах Ил-62 и Ту-154, а позже создан ТРДДФ НК-144 для сверхзвукового пассажирского самолета Ту-144 и выпущен высоконадежный двухконтурный двигатель НК-86, работающий на первом в нашей стране аэробусе Ил-86.
Ряд совершенных ТРДД разработан в конструкторском бюро, возглавляемом В. А. Лотаревым. Одним из первых двигателей этого коллектива был ТРДД АИ-25, установленный на самолет местных авиалиний Як-40. Для пассажирского самолета Як-42 и транспортного Ан-72 под руководством В. А. Лотарева создан высокоэкономичный и легкий ТРДД с большой степенью двух-контурности Д-36, который по конструктивному совершенству и удельным параметрам находится на уровне лучших мировых образцов современных ГТД данного класса.
Двигатель Д-36 был всесторонне исследован как модель построенного позже крупного ТРДД Д-18Т с тягой 230 кН. Самый большой для своего времени самолет ан-124, «Руслан», оснащенный четырьмя двигателями Д-18Т, в августе 1985г. установил мировой рекорд грузоподъемности, подняв груз массой более 171 т на высоту 10750 м. Груз, поднятый «Русланом», более чем на 60 т превышает предыдущий рекорд мира, установленный в декабре 1984 г. военно-транспортным самолетом США С-5А «Гэлакси». Всего на самолете Ан-124 зарегистрировано (за 1985 г.) 21 мировое достижение в полете.
Этапы развития, области применения и параметры ГТД
До конца второй мировой войны монопольное положение как в военной, так и в гражданской авиации занимали силовые установки с поршневыми двигателями, используемыми в качестве генераторов мощности, и воздушными винтами, выполняющими роль движителей. В период интенсивного развития поршневых двигателей (примерно 1910—1945 гг.)
В первом поколении ГТД преобладающим типом был турбореактивный двигатель, который совместил в себе функции генератора мощности и движителя, отрицая воздушный винт как движитель, имеющий ограниченные скоростные возможности Скорости истечения газа из сопла ТРД в несколько раз превышают скорости воздушных масс, отбрасываемых винтом.
В процессе эволюционного развития, протекающего, в основном, по пути увеличения температуры газа перед турбиной и степени повышения давления воздуха в компрессоре, появились труднопреодолимые недостатки турбореактивных двигателей сильно ограничившие их применение на самолетах гражданской авиации. Они обусловлены, в частности, тем, что процессы сжатия и расширения рабочего тела в лопаточных машинах происходят с большими потерями, чем в цилиндрах поршневого двигателя, из-за перетеканий воздуха и газа в зазорах между ротором и статором, повышенных потерь на трение в высокоскоростном потоке и т. п. Трудности охлаждения элементов горячей части ГТД (в основном деталей ротора турбины) намного снижают допустимую температуру газа по сравнению с достигнутой в поршневых двигателях. Все это делает рабочий процесс ТРД не столь совершенным, а КПД, соответственно, меньшим. По принципу создания тяги ТВД отрицает ТРД, в результате чего происходит возврат к исходной схеме силовой установки «двигатель — воздушный винт», но на значительно более высоком уровне развития, так как турбовинтовой двигатель не имеет таких жестких весовых ограничений по мощности, как поршневой [1].
Турбовинтовые двигатели обеспечили возможность существенного (по сравнению с поршневыми) увеличения скорости и грузоподъемности самолетов за счет избытка располагаемой мощности при малой массе конструкции и позволили достичь большой дальности полета благодаря высокой топливной экономичности, характерной для силовых установок с воздушным винтом.
Разработанные ТВД послужили основой для создания вертолетных ГТД, выполняемых, как правило, без встроенного редуктора и с расположенной на отдельном валу свободной (силовой) турбиной, используемой для привода несущего винта через выносной редуктор. Такие ГТД получили название турбовальных двигателей со свободной турбиной (ТВлД). Замена ими поршневых двигателей позволила существенно повысить мощность вертолетных силовых установок при незначительном увеличении их массы и увеличить за счет этого грузоподъемность вертолетов.
По мере накопления опыта проектирования ГТД появилась возможность создания газогенераторов, надежно работающих при Тг=1500… 1650 К, и степени сжатия воздуха 20…30, и высоконагруженных одноступенчатых вентиляторов со сверхзвуковым обтеканием лопаток со степенью сжатия равной 1,4…1,6, что позволило повысить степень двухконтурности ДТРД до 6…8 и снизить за счет этого удельный расход топлива до 0,032…0,038 кг/ч на взлетном режиме при одновременном уменьшении удельного веса.
Столь существенное улучшение параметров достигнуто благодаря широкому применению двух — и трехвальных схем, повышению КПД узлов конструктивными мероприятиями, использованию конвективно-пленочного охлаждения лопаток турбин, дальнейшему совершенствованию материалов и технологических процессов и т. п.
Дальнейшее развитие ГТД для самолетов гражданской авиации протекает, в основном, по пути улучшения их топливной экономичности. Резервы для этого есть, в частности потому, что существующие ДТРД с большой степенью двухконтурности еще не достигли уровня ТВД по удельному расходу топлива. Радикальным средством уменьшения удельного расхода топлива ДТРД является дальнейшее увеличение степени двухконтурности, которое, однако, в рамках их схемы может привести к значительному возрастанию удельного веса, что недопустимо. Поэтому в настоящее время созданы и проходят опытную доводку ГТД качественно нового типа — винтовентиляторные двигатели (ТВВД), в которых движителем является винтовентилятор (ВВ), представляющий собой малогабаритный высоконагруженный многолопастной воздушный винт изменяемого шага. Диаметр ВВ примерно на 40% меньше диаметра обычного винта, поэтому он может допустить большую скорость полета (до 850 км/ч) при сохранении КПД на приемлемом уровне.
Удельный расход топлива винтовентиляторных двигателей должен быть ниже, чем у ТВД классической схемы, так как их газогенераторы имеют (в соответствии с достигнутым уровнем развития) значительно более высокие параметры рабочего цикла и эффективный КПД. За счет прироста скорости полета ТВВД могут обеспечить для самолетов уменьшение расхода топлива на единицу транспортной работы примерно на одну треть по сравнению с лучшими ТВД.
Возникшее противоречие между необходимостью повышения температуры газа и ограниченными прочностными возможностями турбины было разрешено созданием на основе ТРД нового типа газотурбинного двигателя (ТРДФ) с подогревом газа путем сжигания дополнительного количества топлива в специальной камере сгорания (форсажной камере), расположенной между турбиной и реактивным соплом.
При больших дозвуковых и околозвуковых скоростях целесообразно применять ДТРД. Высокотемпературные ТРД могут обеспечить малые сверхзвуковые скорости (до Мн=2,0) при высотах полета около 20 км. Полеты при скоростях, соответствующих Мн= 2,0…3,5, на высотах до 30 км освоены с помощью ТРДФ и ДТРДФ. Дальнейший переход к большим сверхзвуковым и гиперзвуковым скоростям (Мн=6…8) возможен с применением турбопрямоточных и других комбинированных двигателей.
Перспективы развития ГТД
Определяющими факторами перспективного развития транспортной авиации, по мнению специалистов, будут социально-психологический и экономический факторы.
Социально-психологический фактор объединяет такие требования, как гарантия безопасности полетов, сокращение времени передвижения, комфорт, минимальное воздействие на окружающую среду и др.
Экономический фактор содержит в себе стремление к снижению себестоимости перевозок, росту эффективности использования воздушных судов, уменьшению эксплуатационных затрат и т п. Роль двигателей здесь весьма велика, так как, например, доля расходов на эксплуатацию современных широкофюзеляжных самолетов, связанная с двигателями, составляет 40—50%. Особенно велико значение двигателей для проблемы повышения эффективности использования топлива, на которую наибольшее влияние оказывает удельный расход топлива на крейсерском режиме полета. Уменьшение крейсерского удельного расхода топлива приводит не только к непосредственному уменьшению потребного на полет запаса топлива, но и к его дополнительному снижению за счет применения для облегченного самолета двигателей меньшей тяги.
Конец ознакомительного фрагмента.
Оглавление
- Конструкция газотурбинных двигателей
Приведённый ознакомительный фрагмент книги Особенности конструкции газотурбинных двигателей предоставлен нашим книжным партнёром — компанией ЛитРес.
Смотрите также
Когда всё только-только начинается!
Анализ конструкции и лётной эксплуатации функциональных систем самолета Ту-204
Владимир Митрофанович Корнеев
Азы сметного дела. Составление локальных смет
Похвальное Слово Инженеру
Dionigi Cristian Lentini
Как заработать на газовом оборудовании? Часть первая
Алексей Николаевич Леонгардт
Визит в непознанное – 2
Сергей А. Танцура
Основы знаний по ТРИЗ. Теория решения изобретательских задач
Заметки начинающего аналитика
От Электричества до Телевидения. Популярная история
Руководство по изучению дисциплины «Водоснабжение и водоотведение». Часть 1
Технические средства в условиях современного офиса