Меню

Основные узлы литьевой машины

Термопластавтоматы Chen Hsong

Конструкция термопластавтомата – устройство инжекционно-литьевой машины

Конструкция термопластавтомата – устройство инжекционно-литьевой машины

Термопластавтомат или инжекционно-литьевая машина – это сложное технологическое оборудование , состоящее из рабочих узлов, исполнительных механизмов и блока управления, а также имеющее температурные, скоростные, нагрузочные и др. параметры.
Общую конструкцию термопластавтомата можно представить следующим образом:

  • узел впрыска
  • узел смыкания
  • основание
  • система приводных механизмов
  • контроллер

Узел впрыска осуществляет загрузку материала, его расплав и подачу к узлу смыкания. В состав узла впрыска входит загрузочный бункер, материальный цилиндр, нагреватели, шнек, сопло. Загрузка полимерного материала осуществляется через загрузочный бункер, далее он поступает в материальный цилиндр, потом вращательными движениями шнека происходит транспортировка материала к соплу. На этом пути материал нагревается и переходит в вязкотекучее состояние.

В задачу узла смыкания входит закрытие и раскрытие литьевой формы, создание усилия, необходимого для сохранения формы в закрытом виде. Нужное усилие может быть создано под действием колено-рычажного или гидравлического механизма, а также их комбинации. Конструкция узла смыкания также должна обеспечивать простое извлечение готового изделия.

Основание термопластавтомата – неподвижная часть станка, необходимая для крепления рабочих узлов машины. Оно должно отвечать таким требованиям как жесткость, виброустойчивость, прочность, износостойкость.

Управление работой термопластавтомата происходит с помощью электронного контроллера .

Узел впрыска

Наибольшую популярность в использовании при литье пластмасс под давлением получили узлы впрыска шнекового типа. Они обладают хорошими свойствами пластикации и удобством в работе. Рассмотрим устройство шнекового узла впрыска более подробно.

1 – загрузочный бункер, 2 – материальный цилиндр, 3 – шнек, 4 – сопло, 5 – литьевая форма, 6 – литниковое отверстие, 7 – привод вращательного движения шнека, 8 – привод возвратно-поступательного движения шнека, 9 – привод подвода материального цилиндра.

Загрузочный бункер

Загрузочный бункер обеспечивает непрерывную подачу гранулированного или порошкообразного материала в узел впрыска. Корпус бункера устанавливается над загрузочным отверстием материального цилиндра. В нижней части бункера имеется заслонка, которая используется в случае необходимости прекратить подачу материала.

Материальный цилиндр

Материальный цилиндр – это прямой металлический цилиндр, внутри которого находится шнек. Материальный цилиндр условно делится на две зоны – зона загрузки и зона пластикации.
В зоне загрузки осуществляется подача материала на шнек, а в зоне пластикации происходит плавление полимерного материала. По всей длине зоны пластикации на цилиндре установлены кольцевые нагреватели, количество которых зависит от соотношения длина/диаметр шнека и специфике термопластавтомата. Каждый нагреватель отвечает за свою зону нагрева, при этом температура каждой зоны регулируется отдельно.

Шнек является основным рабочим инструментом узла впрыска. Он отвечает за транспортировку пластической массы в материальном цилиндре от зоны загрузки к соплу, при этом обеспечивая ее перемешивание, сжатие и гомогенизацию, а также создает необходимое для впрыска давление.
Основным параметром шнека является соотношение длины рабочей части к наружному диаметру шнека.
Длину рабочей части шнека можно разделить на три зоны – загрузка, пластикация, дозирование. В зависимости от специфики литья под давлением существуют различные модификации шнека с разным соотношением длины зон, но для широкого применения используются универсальные шнеки.

Сопло

Главные функции сопла – это впрыск расплавленного материала в пресс-форму и предотвращение подтекания расплава. Для максимально плотного прилегания сопла к литниковой втулке пресс-формы, наконечник сопла имеет конусообразную форму.

Привод

Чтобы привести шнек в движение необходимо создать крутящий момент, для этих целей на термопластавтомате установлен привод шнека. В конструкциях разных ТПА используются разные системы приводов – гидравлические, гидромеханические и электрические.
Гидравлическая система с насосом и системой регулирования с обратной связью обеспечивает точное управление подачей насоса и давлением рабочей жидкости. Это позволяет стабильно управлять скоростями перемещения механизмов независимо от температуры масла, приводит к уменьшению затрат на обслуживание, снижению энергопотребления, повышению надежности и простоты обслуживания.
Электрический привод обеспечивается двумя электродвигателями, способными создавать большой крутящий момент при регулируемой небольшой частоте вращения вала.
Также существуют ТПА с сочетанием гидравлического и электромеханического привода: гидромеханический привод со встроенным редуктором, с выносным редуктором и др.

Кроме привода шнека большинство машин имеет отдельный привод для подвода к форме узла впрыска. При этом существует два варианта:

  • узел впрыска целиком передвигается на салазках по направляющим, установленным на основании термопластавтомата
  • узел закреплен на колоннах, которые выполняют функцию направляющих при движении узла.

Как правило, привод движения узла впрыска обеспечивается одним или двумя гидроцилиндрами. Исключением являются только ТПА с электрическим приводом.

Узел смыкания

Функциями узла смыкания являются:

  • Обеспечение плотного смыкания обеих частей пресс-формы на этапе впрыска расплава
  • Выдержка отливки под давлением
  • Размыкание формы и извлечение готового изделия

Надежное запирание пресс-формы является ключевым параметром для получения качественной отливки. Также играет роль скорость движения формы и качество извлечения готового изделия.

В конструкцию узла смыкания входят: колонны, плиты (подвижная плита и неподвижная плита), устройство обеспечивающее движение подвижной плиты и надежное запирание формы, устройство обеспечивающее движение выталкивателей.

По виду привода все конструкции узлов смыкания форм можно разделить на гидравлические, пневматические, гидромеханические, пневмомеханические и механические (полностью электрические).

1 – передняя неподвижная плита, 2 – задняя неподвижная плита, 3 – привод, 4 – шток, 5 – подвижная плита, 6 – полуформа, 7 – направляющая колонна.

Колонны

Колонны выполняют роль направляющих, по которым перемещается подвижная плита с установленной на ней полуформой, а также на них замыкается усилие, которое возникает при запирании пресс-формы и выдержки под давлением. Направляющие колонны представляют собой прочные стальные стержни, с минимальной чувствительностью к переменным нагрузкам и пульсациям.
Узел смыкания термопластавтомата обычно оснащен двумя или четырьмя колоннами, также существуют и бесколонные узлы смыкания. Двухколонные узлы смыкания чаще используются на машинах малой мощности, а в бесколонных машинах усилие замыкается в С образных рамах.

Плиты

Плиты необходимы для монтажа пресс-формы. Полуформа с литниковым каналом устанавливается на неподвижной плите, а полуформа с выталкивателями – на подвижной. Плиты являются наиболее нагруженной частью узла смыкания, поэтому чаще всего изготавливаются из стали. Плоскости подвижной и неподвижной плит должны быть строго параллельными, это имеет большое значение для снижения износа направляющих колонн и для обеспечения равномерного распределения нагрузки.
Конструкция плит определяется системой запирания и комплектацией ТПА.

Устройство запирания пресс-формы

На термопластавтоматах большой мощности преимущественно используют гидравлические двухступенчатые устройства запирания пресс-формы, в машинах средней мощности применение двухступенчатых гидравлических устройств не превышает 10—15 %. На ТПА малой и средней мощности преобладают гидромеханические и механические устройства смыкания.

Устройство выталкивания

Для того, чтобы станок для литья пластмасс мог работать в автоматическом режиме, литьевая форма должна быть оборудована системой выталкивания готовой продукции. Движения выталкивателей обеспечивается приводными устройствами. В простейшем варианте — это регулируемые упоры для хвостовиков литьевых форм, в современных конструкциях ТПА предпочтение отдается механическим или гидравлическим устройствам.

Конструкции литьевых машин

Конструкции литьевых машин весьма разнообразны. Основными классификационными признаками ЛМ являются усилие запирания формы (кН), то есть смыкания формы, создаваемое прессовым блоком, и объем впрыска, выражаемая числом кубических сантиметров расплава, которые могут быть подготовлены маши­ной для однократной подачи в литьевую форму. Выпускаемые промышленностью се­рийные литьевые машины, как правило, объединены в типоразмерные ряды по этим двум параметрам.

Конструкция литьевых машин определяет процессы пластикации и формования полимеров, возможность реализации различных технологических режимов изготовления изделий, их качество, а также их технико-экономические показатели. Конструкции литьевых машин весьма разнообразны, но каждая из них включает основные узлы:

— узел пластикации и впрыска, состоящий из устройства для дозирования материала, пластикации его в материальном цилиндре, а затем впрыска за счёт гидроцилиндра;

— узел запирания, включающий устройство для перемещения литьевой формы, удержания её в сомкнутом состоянии и выталкивания отливки из полости формы;

— аппаратуру для управления технологическими режимами;

— устройства, обеспечивающие безопасность работы (блокировки механические, электрические).

Назначение механизма пластикации и впрыска состоит в выполнении следующих технологических операций:

— набор и пластикация дозы перерабатываемого материала;

— впрыск расплава и выдержка его под давлением в форме до затвердевания материала в литнике.

Механизмы, осуществляющие эти технологические операции, могут быть конструктивно соединены или разобщены.

Наиболее современной и рациональной является схема червячно-поршневой пластикации в одну линию, обеспечивающая высокую точность дозирования и высокую производительность, простоту конструкции и отсутствие мест застоя материала. Материал в червячных пластикаторах этой конструкции находится в непрерывном движении и поэтому непрерывно гомогенизируется. Прогрев материала осуществляется не только за счёт теплопередачи от нагретых стенок цилиндра, но и за счёт диссипативных тепловыделений при трении материала и его деформировании.

При расположении механизмов пластикации и впрыска в одну линию (рис. 51) червяк выполняет две функции: пластицирует и накапливает необходимую дозу расплава и впрыскивает расплав в форму.

Пластикационный цилиндр 1 укреплён на корпусе 9 механизма впрыска с помощью полуколец 6 и гайки 5. Вращение червяка 3 осуществляется от гидродвигателя 10 через червячную передачу 11, вал 8 и муфту 7. Осевые нагрузки при работе червяка воспринимаются упорным подшипником 14, установленном в поршне 15 гидроцилиндра 13. Расплав нагревается электронагревателями 4; температура расплава контролируется датчиками термопар 2 с терморегуляторами. Шпильки 12 крепят гидроцилиндр 13 к корпусу 9.

Гранулированный материал проходит через загрузочное отверстие А в зону загрузки червячного пластикатора и далее, продвигаясь по червяку при его вращении, превращается в расплав. Доза расплавленного материала скапливается в передней (сопловой) части пластикационного цилиндра 1, а червяк под давлением, возникающим в дозе материала, отходит вправо. При подаче жидкости из гидросистемы машины в поршневую полость гидроцилиндра 13 поршень 15 передвигается влево, сообщая осевое перемещение червяку 3, который впрыскивает дозу расплава в полость формы.

Мощность привода вращательного движения шнека можно определить по зависимости:

где – крутящий момент на валу червяка;

– частота вращения червяка.

В свою очередь можно определить по зависимости

где – пластикационная производительность, кг/час,

где – необходимая масса полимера,

с – коэффициент, учитывающий свойства полимера ().

Мощность поступательного движения шнека (кВт) рассчитывают из условия обеспечения необходимого для заполнения формы давления литья и скорости поступательного движения шнека:

Читайте также:  417 двигатель уаз какое масло лить

где – давление, создаваемое насосом, МПа;

– КПД насоса и гидросистемы впрыска;

– коэффициент перегрузки в зависимости от тина электродви­гателя, давления и характера его изменения;

– дав­ление литья, МПа;

, – площадь шнека и поршня гидроцилиндра впрыска, м 2 .

Подачу насоса , которая обеспечивает необходимую объем­ную скорость течения расплава в системе сопло — форма или заданное время впрыска (заполнения) , при номинальном объеме впрыска за цикл определяют следующим образом:

– коэффициент утечек гидрожидкости.

Таким образом, имеем:

Механизм запирания литьевой машины предназначен для перемещения литьевой формы, а также для удержания ее в сомкнутом состоянии при впрыске и формовании изделия. Конструктивные параметры и кинетика прессовой части литьевой машины определяются требуемой быстроходностью машины, технологическими параметрами процесса и геометрическими характеристиками изделия. Скорость смыкания-размыкания плит должна быть максимальной, а в конце хода должна снижаться для предотвращения удара полуформ.

На практике разработано и применяется большое число раз­личных механизмов запирания, которые можно разделить на две группы: простые и комбинированные. В простых конструк­циях механизмы перемещения плит и запирания формы совме­щены, в комбинированных перемещение плиты осуществляется одним механизмом, а другой создает необходимое усилие смы­кания формы (запирания).

По виду привода простые и комбинированные конструкции подразделяются на гидравлические, пневматические, гидроме­ханические, пневмомеханические и механические. Гидравличес­кие и пневматические конструкции относятся к механизмам си­лового запирания, в которых усилие запирания является внеш­ним по отношению к самому механизму. Гидромеханические, пневмомеханические и механические устройства являются меха­низмами кинематического запирания. В механизмах этого типа усилие запирания развивается за счет упругой деформации звеньев, создаваемой приводом. После прекращения действия силы, развиваемой ведущим звеном механизма, необходимое усилие запирания сохраняется в виде внутренней силы, являю­щейся результатом упругой деформации.

В современных конструкциях литьевого оборудования прес­совые части пневматического, пневмомеханического и механиче­ского типов не нашли широкого применения из-за незначитель­ности развиваемых ими усилий запирания. В литьевых машинах с малым объемом впрыска применение механических узлов за­пирания может быть оправдано ввиду их высокой быстроход­ности и малой энергоемкости.

Наиболее широкое распространение получили гидравличес­кие и гидромеханические конструкции.

Гидравлические механизмы осуществляют подвод плиты и за­пирание формы с помощью одного или нескольких гидроцилинд­ров без введения промежуточных механизмов, что повышает надежность конструкции. Гидравлические механизмы позволяют легко регулировать расстояние между плитами, надежно предохранены от поломок и перегрузок. К недостаткам гидравличес­ких узлов запирания относится их значительная металлоем­кость и малая скорость смыкания формы по сравнению с гидро­механическими конструкциями.

Прессовая часть литьевой машины (механизм запирания формы) современной комбинированной гидравлической конст­рукции представлена на рис. 52. В этом механизме неподвиж­ная плита 12 выполнена заодно с гидроцилиндром 1 и жестко связана колоннами 7 с гайками 9 с другой неподвижной пли­той 8. Полый плунжер 2 прикреплен к промежуточной плите 4 защелкой 3.

Ускоренное смыкание подвижной плиты 6 с непо­движной плитой 5 осуществляется двумя вспомогательными гид­роцилиндрами 11 со штоками 10. При этом происходит вывод вспомогательного плунжера 5 из полости плунжера 2. После этого защелка 3 с помощью гидроцилиндра 13 закрывает про­межуток между вспомогательным плунжером 5 и плунжером 2. Усилие запирания (смыкания) формы, создаваемое затем гид­роцилиндром 1 при подаче туда жидкости, от плунжера 2 через защелку 3 и вспомогательный плунжер 5 передается подвижной плите 6.

Полностью гидравлический механизм смыкания, обеспечивающий большую жесткость, короткое время холостого хода и необходимую плотность смыкания полуформ, представлен на рис. 53.

Рабочая жидкость подается по внутреннему каналу поршня гидроцилиндра 3 ускоренного смыкания. Попадая в поршневую полость этого цилиндра, рабочая жидкость воздействует на донышко гидроцилиндра 3 и перемещает поршень гидроцилиндра запирания 4. При этом в поршневой полости гидроцилиндра 4 создается разряжение, открывается клапан, и рабочая жидкость заполняет поршневую полость гидроцилиндра 4. Подвижная плита 2 с полуформой прижимается к неподвижной полуформе, закрепленной на неподвижной плите 1. Усилие замыкания создается поступлением небольшого количества рабочей жидкости в поршневую полость гидроцилиндра 4 при закрытом клапане. Давление жидкости повышается до необходимого для создания требуемого усилия замыкания полуформ.

Гидравлические механизмы запирания требуют более высоких затрат на системы гидравлического и электрического управления.

Расчет гидравлического механизма запирания сводится к определению диаметров и хода поршней главного и вспомога­тельного цилиндров, а также производительности насоса гидро­привода.

Диаметр поршня главного гидроцилиндра определяется по уравнению

где – усилие запирания (смыкания);

– давление жидкости в гидросистеме запирания, выбираемое в пределах от 5 до 20 МПа.

Производительность гидронасоса привода механизма смыкания определяется из соотношения

где – принятая скорость смыкания формы (для ускоренного перемеще­ния , для замедленного перемещения ).

Диаметр плунжера ускоренного перемещения подвижной плиты определяется из условия обеспечения принятой скорости при определенной производительности насоса:

В механизмах запирания гидравлического типа расчету на прочность подлежат гидроцилиндры, колонны и плиты.

В механизмах запирания простой гидромеханической конструк­ции усилие запирания формы и движение подвижной плите со­общаются от гидроцилиндра через рычажную систему. Гидро­механические конструкции позволяют получить значительные усилия запирания плит при небольших усилиях, развиваемых гидроцилиндром привода. Это дает возможность использовать в гидросистемах давления, значительно меньшие, чем в гидрав­лических механизмах запирания.

Главными преимуществами гидромеханических устройств яв­ляются: небольшие габариты и масса, малая металлоемкость; высокая средняя скорость запирания; безударное запирание ввиду возможности замедления скорости сближения форм пе­ред их смыканием.

Кинематические схемы гидромеханических устройств запира­ния довольно разнообразны. На рис. 54 представлены конст­руктивная и кинематическая схемы простого шестизвенного гид­ромеханического механизма с качающимся гидроцилиндром 1, применяемого в литьевых машинах с усилием запирания до 1 МН.

Гидроцилиндр 1 через систему рычагов 3 и шарниров 4 пе­ремещает подвижную плиту 5. Гидроцилиндр 1 шарнирно зак­реплен на каретке 9, которая вместе с системой рычагов может перемещаться по колоннам 8 при регулировании расстояния между плитами 5 и 7. Неподвижные плиты 2 и 7 жестко связа­ны колоннами 8. Смыкание полуформ 6 осуществляется при по­даче жидкости в штоковую полость гидроцилиндра.

На рис. 55 показана конструкция механизма замыкания с симметричным или сдвоенным коленно-рычажным узлом.

На конце штока 4 гидроцилиндра 5 закреплена поперечина с шарнирно закрепленными на ее концах тягами. В свою очередь, другим концом тяги шарнирно крепятся с рычажной системой 3, которая на шарнирах крепится к плитам 6 и 2. К плите 2 крепится подвижная полуформа, а к плите 1 – неподвижная. При подаче рабочей жидкости в штоковую полость гидроцилиндра 5 шток 4 движется влево, рычажная система 3 складывается, плита 2 с полуформой перемещается влево. Форма раскрывается. Замыкание формы происходит при подаче рабочей жидкости в поршневую полость гидроцилиндра 5.

Для коленчато-рычажных механизмов с неподвижным гид­роцилиндром смыкания характерна возможность реализации минимального хода раскрытия литьевых форм. Важными пока­зателями для них являются: отношение максимальной скорости размыкания к максимальной скорости смыкания () и отношение минимального усилия размыкания к минимальному усилию смыкания ().

Отношение скоростей смыкания и размыкания при исполь­зовании параллельной рычажной системы по сравнению с при­менением простого коленчато-рычажного механизма в направ­лении раскрытия формы является величиной переменной. Оно проходит через максимум и в конце раскрытия формы достига­ет минимума. Так как изменение отношения усилий размыка­ния и смыкания носит обратный характер, то к началу процес­са смыкания наблюдаются большие ускорения.

Коленчато-рычажные механизмы смыкания потребляют на 15–20% меньше энергии и рабочей жидкости по сравнению с гидравлическими механизмами. Их недостатком является ин­тенсивная изнашиваемость шарнирных соединений и плохая воспроизводимость усилий смыкания. Первый из указанных недостатков может быть частично устранен за счет применения централизованной смазки; для улучшения же воспроизводимо­сти установленных усилий смыкания используют регулирование давления жидкости в гидроцилиндре механизма смыкания.

Усилие запирания в узлах рычажной конструкции зависит от создаваемого усилия на ведущем звене механизма, кинематики механизма, конструкции узла его регулирования.

Рычажные конструкции рассчитывают в положении, когда литьевая форма закрыта. В этом положе­нии колонны и звенья рычагов испытывают деформации: колонны (станина) растягиваются, а рычаги сжимаются.

Начальную длину колонн при соприкосновении полуформ можно выразить через размеры механизма (рис. 56):

где , , и – длины первого и второго звеньев рычагов, плиты и формы; и – углы между звеньями рычагов и горизонтальной осью в момент сопри­косновения половин формы.

Упругое удлинение колонн

здесь – усилие запирания формы; – модуль упругости материала колонн; – суммарная площадь сечения колонн.

Упругое сокращение звеньев рычажного механизма

где , , и – модули упругости первого и второго звеньев рычагов, плиты и формы; , , и – площади сечения первого и второго звеньев рычагов, плиты и формы.

Уравнение совместных деформаций запишем:

где – общая длина всех звеньев; – деформация звена.

После некоторых допущений и преобразований можно получить:

Относительная деформация всего рычажного механизма повышается с увеличением углов и и соотношения . При определенных размерах звеньев и колонн раз­виваемое усилие тем больше, чем больше углы и в момент соприкосновения полуформ. Если угол ( – угол, на ко­торый рассчитан механизм) то колонны будут деформировать больше и будет развиваться большее усилие запирания (предпо­лагается, что усилие привода ведущего звена достаточно для этого). Если , то усилие запирания будет меньше, чем указано в паспорте машины.

0сновные производители литьевых машин в СНГ – Хмельницкое ПО «Термопластавтомат» и Одесское ПО «Прессмаш». Серии выпускаемых литьевых машин включают 15 типоразмеров машин с усилием запирания 12,5…6000 кН. Это машины типов ДЕ, ДК и ДП. Обозначение модели литьевой машины, например ДЕ 3727, расшифровывают следующим обра­зом: Д — машина для производства изделий из неметаллов; Е — поколе­ние машины; 37 — серия машины, 27 — условное усилие запирания ин­струмента, соответствующее 500 кН (30; 32; 34 и 38 — условное усилие запирания, соответствующее 1000; 1600; 2500 и 6300 кН).

Управление литьевыми машинами электронное; машины с цикловым программным управлением обозначают буквой Ц, с числовым программ­ным управлением — буквой Ф.

В марках моделей зарубежного производства в числителе указывают усилие запирания, в знаменателе — объем впрыска, приведенный к давле­нию 1 МПа. Однако, многие фирмы пользуются своим обозначением; на­пример, в обозначении литьевой машины фирмы «Arbung» (Германия) 221-50-250 цифры соответствуют расстоянию между колоннами в свету, приве­денному объему отливки и усилию запирания инструмента.

Читайте также:  Как разобрать двигатель лифан х60

В соответствии с ГОСТ 10767-87 предусмотрены следующие исполне­ния машин; в зависимости от давления литья и объема впрыска: I — ма­шины общего назначения; II — машины с повышенным давлением литья и уменьшенным объемом впрыска; Ш — машины с пониженным давлением литья и увеличенным объемом впрыска.

Технические характеристики вышеуказанных литьевых машин приведены в следующих таблицах:

Технические характеристики литьевых машин Хмельницкого ПО «Термопластавтомат»

Параметр Значение параметра для модели
ДЕ 3127. Ф1 ДЕ 3127-63Ц1 ДЕ ЗЗЗ0. Ф1 ДЕ ЗЗЗ0-125Ц1
Узел запирания
Усилие запирания инструмента, кН
Расстояние между колоннами в свету, мм: по горизонтали по вертикали
Размеры крепежных плит, мм (длина × высота) 460×390 460×390 590×510 590×510
Высота инструмента, мм 140. 250 140.250 160. 320 160..320
Максимальное расстояние между крепежными плитами, мм
Ход подвижной плиты при наибольшей высоте инструмента, мм
Узел пластикации и впрыска
Диаметр D шнека, мм
Отношение D/L 15,1 18,5 15,7 15,7
Объем впрыска, см 3
Объемная скорость впрыска, см 3 /с
Крутящий момент, Нм
Пластикационная производительность, кг/ч
Мощность привода шнека, кВт 13,6 13,6 17,3 17,3
Мощность электронагревателя, кВт 6,2 4,5 5,5 5,4
Общие данные машины
Число сухих циклов, мин –1
Суммарная установленная мощность, кВт 17,5 15,5 20,5 20,4
Габаритные размеры, мм: длина ширина высота
Масса, кг

Кроме указанных моделей ПО выпускает литьевую машину Д 3136-1000(см. далее).

Примечание. Для приведенных моделей механизм запирания типа 2, давление литья 140 МПа, число зон обогрева узла пластикации и впрыска – 4.

Технические характеристики литьевых машин Хмельницкого ПО «Термопластавтомат»

Параметр Значение параметра для модели
ДЕ 3132- 250Ц1 ДЕ 3334. Ф1 ДЕ 3121.1 ДЕ ЗЗЗ2 Ф1
Узел запирания
Усилие запирания инструмента, кН
Расстояние между колоннами в свету, мм: по горизонтали по вертикали
Размеры крепежных плит, мм (длина × высота) 756×656 756×656 290×250 756×656
Высота инструмента, мм 200. 400 200. 400 110. 160 200. 400
Максимальное расстояние между крепежными плитами, мм
Ход подвижной плиты при наибольшей высоте инструмента, мм
Узел пластикации и впрыска
Диаметр D шнека, мм
Отношение D/L 14,6 14,6 18,5 14,6
Объем впрыска, см 3
Давление литья, МПа
Объемная скорость впрыска, см 3 /с
Крутящий момент, Нм
Пластикационная производительность, кг/ч
Мощность привода шнека, кВт
Число зон обогрева
Мощность электронагревателя, кВт 9,5 9,5 1,5 10,8
Общие данные машины
Число сухих циклов, мин –1
Суммарная установленная мощность, кВт 31,5 31,5 7,0 32,8
Габаритные размеры, мм: длина ширина высота
Масса, кг

Примечание. Для приведенных моделей механизм запирания типа 2.

Технические характеристики литьевых машин Одесского ПО «Прессмаш»

Параметр Значение параметра для модели
Д3334. Ф1 Д3136-1000 ДЗ1З8.2 ДЕ З140.2
Узел запирания
Усилие запирания инструмента, кН
Расстояние между колоннами в свету, мм: по горизонтали по вертикали
Размеры крепежной плиты, мм
Высота инструмента, мм 250. 500 320…630 400. 800 500..1000
Максимальное расстояние между крепежными плитами, мм
Ход подвижной плиты при наибольшей высоте инструмента, мм
Тип механизма запирания
Узел пластикации и впрыска
Диаметр D шнека, мм
Объем впрыска, см 3
Давление лить, МПа
Объемная скорость впрыска, см 3 /с
Крутящий момент, Нм
Пластикационная производительность, кг/ч
Мощность электронагревателя, кВт 14,0 12,32 27,17 36,00
Общие данные машины
Число сухих циклов, мин –1 29,0 14,3 12,5 7,5
Суммарная установленная мощность, кВт 44,0 49,3
Габаритные размеры, мм: длина ширина высота
Масса, кг

Примечание. Для приведенных моделей число зон обогрева узла пластикации и впрыска – 4.

Кроме вышеуказанного оборудования для переработки термопластов литьем под давлением, ЗАО «Атлант» (г. Минск) выпускаются термопластавтоматы модели БЗСТ, предназначенные для переработки различных термопластичных материалов с температурой пластикации до 350 °С. Оригинальная конструкция сочетает в себе передовые достижения, применяемые при производстве термопластавтоматов. Система управления, гидравлическая система, электронное оборудование, узел инжекции выполнены на уровне передовых европейских компаний. Гидравлическая система основана на регулируемом насосе с электронной системой управления и пропорциональной гидроаппаратурой, что обеспечивает бесступенчатое регулирование скоростей и движений в необходимом диапазоне. Износостойкий узел пластикации позволяет перерабатывать наполненные композиции.

Рассмотрим конструкцию термопластавтоматов серии БЗСТ на примере литьевой машины БЗСТ 125/250. Общий вид термопластавтомата представлен на рис. 57.

Основание 1 сваренной конструкции со встроенным гидробаком опирается на восемь регулируемых опор, которые дают возможность выставить термопластавтомат в горизонтальной плоскости. На основании 1 устанавливаются основные узлы термопластавтомата: узел замыкания 2 служит для замыкания литьевых форм, и удержания их в процессе литья с заданным усилием. Для крепления литьевых форм на подвижной и неподвижной плитах имеется сетка резьбовых отверстий М16-7Н в соответствии с ГОСТ 10767-87. Бункер 3 предназначен для накопления и подачи материала в пластикационный цилиндр. Загрузка сырья в бункер производится пневмотранспортом, вручную, транспортером. Гидроцилиндр 4 обеспечивает перемещение узла пластикации и впрыска и поджим его к форме. Узел пластикации и впрыска 5 предназначен для набора необходимой дозы пластицируемого материала и впрыска его в литьевую форму. Гидрооборудование 6 предназначено для приведения в движение и управление механизмами запирания литьевой формы, подвода и отвода узла впрыска, управления клапаном сопла, набора дозы, впрыска разогретого термопласта в литьевую форму, выталкивания отливки из формы. Система охлаждения 7 необходима для стабилизации технологического процесса литья деталей. Места подвода, отвода и расположения системы охлаждения показаны на рис. 57. Пульт управления 8 предназначен для задания параметров рабочих режимов, задания и отмены цикла, контроля отработки узлов и механизмов (диагностика, графика), сохранения параметров техпроцессов по деталям в памяти (создания архива). Пульт состоит из двух частей – верхняя панель визуализации состоящая из монитора, нижняя панель управления с клавиатурой.

Узел замыкания (рис. 58) состоит из плиты несущей – неподвижной 1, которая жестко крепиться на основании и является передней крышкой цилиндров запирания. В центре плиты имеется отверстие диаметром 100Н7 для центрирования неподвижной части литьевой формы. В плите имеются каналы для подвода рабочей жидкости в цилиндры замыкания. Плита подвижная 2 перемещается по линейным направляющим качения. В центральной части плиты установлен выталкиватель 6, также имеется отверстие диаметром 100Н7 для базирования литьевой формы. Подвижная плита связана с несущей четырьмя штоками цилиндров замыкания.

Цилиндр замыкания (рис. 59) служит для запирания литьевой формы с заданным усилием и удержания ее в процессе литья. Цилиндр замыкания имеет шток-поршень 5, который перемещается в гильзе 7, установленной между плитой несущей 8 и опорной 9 и зафиксирован четырьмя шпильками (М24).

Цилиндр быстрого подвода форм крепится на плите опорной 9 винтами 15 и служит для быстрого перемещения подвижной плиты при закрытии и раскрытии формы. Для развоздушивания цилиндра при заполнении гидросистемы в передней и задней крышках имеются пробки 4. Плавность трогания в начале хода и торможения в конце хода обеспечивают встроенные втулки торможения 2.

В штоке имеется канал А управления обратным клапаном 6. Канал Б служит для перелива масла из штоковой полости в бесштоковую и обратно при ускоренном перемещении подвижной плиты.

В передней направляющей втулке 10 установлено шевронное уплотнение, которое дает возможность в процессе эксплуатации производить подтяжку уплотнения. Усилие замыкания передается на плиту подвижную через гайки 11.

При быстром подводе подвижной плиты клапан 6 отведен пружиной и обе полости цилиндра соединены каналом Б, по которому рабочая жидкость перетекает из поршневой полости в штоковую, избыток- по каналу В в бак 12.

При запирании подается давление по каналу А – клапан 6 закрывается, давление подается по каналу Г и создается давление запирания. Перед раскрытием формы происходит сброс давления в каналах А и Г, пружиной открывается клапан 6 и масло перетекает в поршневую полость цилиндра по каналу Б, а недостающий объем засасывается из бачка 12 в верхние цилиндры замыкания и из бака гидростанции через клапана 8 в нижние цилиндры.

Выталкиватель (рис. 58, поз. 6) устанавливается на подвижной плите и служит для удаления готовых деталей из литьевой формы. Выталкиватель (рис. 60) состоит из цилиндра 1, который установлен на четырех стержнях 2 на обратной стороне подвижной плиты. Шток соединен с плитой 3, на которой установлены четыре боковых толкателя 4 и центральный 5. При сборке торцы толкателей выставляются в одну плоскость подгонкой компенсаторов 6, поэтому при демонтаже необходимо толкатель и компенсатор маркировать и использовать совместно. Центральный толкатель 5 состоит из двух частей А и Б. Часть Б заказчик может изготовить по своим размерам, необходимым для стыковки с устанавливаемой литьевой формой.

Контроль задания величины хода выталкивателя осуществляется при помощи индуктивных датчиков 8, 9,10, установленных на линейке 7. Выталкиватель может работать в следующих режимах: с постоянной скоростью при ходе 0–120 мм, с замедлением в конце хода по датчику 10, при ходе 0–120 мм.

Рейка безопасности (рис. 58, поз. 7) предназначена для механической блокировки плиты подвижной при отказе электрической и гидравлической блокировок. Время срабатывания механической блокировки зависит от позиции, в которой находится рейка относительно упора в момент открытия ограждения. Рейка безопасности (рис. 61) состоит из зубчатой рейки 1, которая крепится через планку 2 к подвижной плите, поворотного упора 3, который через систему рычагов при закрытом ограждении поднят и не касается поверхности рейки. При открытии ограждения зоны замыкания формы, рычаг 4 поворачивается по часовой стрелке и освобождает через тягу 5 упор 3, который под собственным весом опускается на рейку или в паз рейки.

Бункер рис. 62 предназначен для накопления и подачи материала в пластикационный цилиндр. Воронка 1 имеет емкость 50 л. Патрубок 2 с направляющими служит для сброса материала из бункера. Воронка смонтирована на ползуне 3 с ручкой. Под воронкой установлен магнитный фильтр 4, предназначенный для извлечения ферромагнитных включений из сырья при его просыпании через магнитную решетку.

При замене материала, когда возникает необходимость удалить материал из бункера необходимо закрыть задвижку 5, чтобы материал не попадал в пластикационный цилиндр, сдвинуть бункер к выгрузочному патрубку, высыпать материал в какую-нибудь емкость. После этого необходимо оставшийся материал прогнать через цилиндр. Для контроля уровня материала в бункере служит смотровая щель 6.

Читайте также:  Двигатель проработал без давления масла

Узел пластикации и впрыска рис. 63 включает в себя цилиндр пластикации 1, механизм набора дозы и впрыска 2. Эти элементы крепятся на столе 3, механизм управляем запирающим клапаном сопла 4. Стол 3 перемещается по плоским направляющим, смазываемым через пресс-маслёнки. Контроль конечного положения стола осуществляется конечным выключателем 5.Перестановкой фишки 6 по линейке 7 задаётся величина отвода механизма в цикле.

В пластикационном цилиндре (рис. 64) происходит транспортировка, плавление, сжатие, смешивание и выдавливание материала в форму.

При вращении шнека 7, материал, проходя по цилиндру 1 (из-за разности коэффициентов трения материал-цилиндр, материал-шнек) нагревается под действием нагревателей 6 и переходит в вязко-текучее состояние, проходит через втулочный, накапливается перед торпедой шнека 4 и создаёт давление, которое отводит шнек назад (вправо). При осуществлении впрыска клапан 3 плотно прижимается к кольцу 2 и не позволяет материалу перетекать в обратном направлении. Нормальная и стабильная работа этого уплотнительного устройства оказывает большое влияние на точность дозы при впрыске. Для предотвращения утечки пластицируемого материала в процессе дозировки служит сопло 10 с игольчатым клапаном 5. Открытие и закрытие клапана производится механизмом управления клапаном 4.

Материал нагревается при помощи ленточных нагревателей, охватывающих цилиндр пластикации. Цилиндр пластикации по длине имеет 4 зоны нагрева. Температура нагрева каждой зоны задаётся индивидуально в зависимости от технологии изготовления отливаемой детали.

Температура нагрева измеряется при помощи термопар 8 и автоматически регулируется. Для уменьшения передачи тепла к механизму впрыска на цилиндре установлена охлаждающая рубашка 9. Охлаждение производится проточной водой. Вода подводится от цеховой системы водоснабжения. Максимальная температура охлаждающей рубашки задаётся с пульта (в зависимости от перерабатываемого материала) и контролируется термопарой 13. При достижении этой температуры – системой управления подаётся предупреждающий сигнал и происходит отключение обогрева пластикационного цилиндра.

Механизм впрыска (рис. 65) состоит из гидромотора, вала соединяющего мотор и шнек-поршень, а также двух гидроцилиндров впрыска. Набор необходимой дозы материала происходит при вращении шнека 4. Он приводится во вращение при помощи высокомоментного радиально-поршневого нерегулируемого гидромотора 1, через соединительный вал 2. Под давлением пластицируемого материала, нагнетаемого вращающимся шнеком в переднюю часть цилиндра, шнек-поршень перемещается вправо. Величина набираемой дозы зависит от величины перемещения шнека в осевом направлении – ход шнека. Перед впрыском необходимой дозы открывается игольчатый клапан механизмом управления клапаном и с помощью двух гидроцилиндров 3 происходит впрыск материала в форму по программе с выдержкой под давлением в конце цикла. После этого происходит закрытие игольчатого клапана и начинается цикл набора дозы.

Регулировать процессы формования можно изменением скорости течения полимера при заполнении формы путём изменения скорости впрыска (скорости перемещения шнека). Скорость перемещения шнека задаётся на отдельных участках перемещения шнека, в мм/с. Изменение скорости перемещения шнека (заполения) позволяет регулировать давление в форме и его распределение по длине формы в период её заполнения.

Гидравлическая система с насосом фирмы Rexrot и системой регулирования с обратной связью обеспечивает точное управление подачей насоса и давлением. Это позволяет уменьшить затраты на обслуживание гидравлических блоков управления, уменьшить потребление энергии, стабильно управлять скоростями перемещения механизмов независимо от температуры масла, гарантировать высокую надёжность гидросистемы, простоту обслуживания.

Система управления термопластавтоматом основана на контролёре S7-300 Siemens. Она включает экран TFT с разрешением 640480 точек; 23 операционных экрана; графики температур, скорости и давления впрыска, анимационное представление состояния ограждений, положение шнека и движение формы, данные по плановому заданию и изготовленной продукции; функцию мониторинга и оповещения о сбоях; встроенный дисковод, позволяющий загружать параметры с других термопластавтоматов; самодиагностику; произвольно программируемый цикл машины; встроенные часы с функциями включения предварительного обогрева.

На термопластавтомате предусмотрена механическая, гидравлическая и электрическая блокировка подвижных щитов ограждения зоны замыкания с целью защиты оператора от травм во время технического обслуживания или замены формы. При открытии одного из двух щитов ограждения зоны запирания, происходит электрическая, гидравлическая и механическая блокировка перемещения подвижной плиты на закрытие формы. Нагревательные элементы закрыты кожухом. Зона касания сопла закрыта прозрачным щитом с электрической блокировкой.

Технические характеристики термопластавтоматов, выпускаемых ЗАО “Атлант” г. Минск следующие:

Параметр Значение параметра для модели
БЗСТ125/450 БЗСТ250/680 БЗСТ450/1700
Узел запирания
Усилие замыкания (max) тонн Мах ход подвижной плиты мм Размер крепежа мм Высота литьевой формы min-max мм Расстояние между колоннами в свету мм Ход выталкивателя (max) мм Усилие выталкивания кН 710×710 180–450 710×710 250–750 1020×1020 290–700
Узел пластикации и впрыска
Объём впрыска (max) см 3 Диаметр шнека мм Давление впрыска бар Отношение L/D Число оборотов шнека об/мин Скорость впрыска (max) см 3 /с Усилие прижима сопла (max) кН Ход узла впрыска (max) мм Мощность нагрева цилиндра кВт 8–320 12,6 10–250 65–210
Общие данные
Общая установленная мощность кВт Мощность гидропривода кВт Объём масла л Масса нетто кг Габаритные размеры Длина мм Высота мм Ширина мм 42,6

Из зарубежных термопластавтоматов на предприятиях Республики Беларусь нашли применение машины немецкой фирмы ДЕМАГ ЭРГОТЕХ серии ЕХТRA. Технические характеристики их следующие:

Модель Ergotech 25 EXTRA Ergotech 35 EXTRA Ergotech 50 EXTRA
Узел смыкания Усилие смыкания, кН Размер плит, мм Расстояние между колоннами, мм 390×390 280×280 390×390 2802×80 480×480 355×355
Узел впрыска Диаметр шнека, мм Рабочий объём цилиндра, см 3 Давление впрыска, бар Скорость впрыска, см 3 /с 18 22 25 28 42 54 2738 1833 1420 37 55 71 80 115 18 22 25 22 25 30 28 42 54 48 61 88 2738 1833 1420 2441 1890 1313 65 100 130 60 80 110 200 310 25 30 35 30 35 40 61 106 144 106 168 220 2752 1995 1466 2755 2024 1550 70 90 130 70 90 120
Общие данные Насосный агрегат, кВт Установленная мощность, кВт Объём масляного бака, л Вес машины, кг Габаритные размеры (д×ш×в), м 25-80 5,5 2,65×1,04×1,65 35-80 35-115 7.5 7.5 12.0 13.8 120 120 1550 1600 3,05×1,06×1,65 3,05×1,06×1,65 50-200 50-310 11,0 11,0 16,7 19,3 20,4 19,3 20,4 22,1 135 135 2400 2485 3,79×1,15×1,99 3,79×1,15×1,79
Модель Ergotech 80 EXTRA Ergotech 100 EXTRA Ergotech 110 EXTRA
Узел смыкания Усилие смыкания, кН Размер плит, мм Расстояние между колоннами, мм 540×540 400×400 540×540 400×400 670×670 470×470
Узел впрыска Диаметр шнека, мм Рабочий объём цилиндра, см 3 Давление впрыска, бар Скорость впрыска, см 3 /с 310 430 30 35 40 35 40 45 106 168 220 168 231 293 2755 2024 1550 2640 2025 1600 80 110 150 80 110 140 310 430 30 35 40 35 40 45 106 168 220 168 231 293 2755 2024 1550 2640 2025 1600 120 160 210 120 160 200 430 600 35 40 45 40 45 50 168 231 293 231 322 398 2640 2025 1600 2420 1910 1550 120 160 205 130 170 210
Общие данные Насосный агрегат, кВт Установленная мощность, кВт Объём масляного бака, л Вес машины, кг Габаритные размеры (д×ш×в), м 80-310 80-430 15 15 23,3 24,4 26,1 24,4 26,1 26,3 180 180 3750 3800 4,04×1,27×1,81 4,13×1,27×1,81 100-310 100-430 18,5 18,5 26,8 27,9 29,6 27,9 29,6 29,8 180 180 3820 3850 4,04×1,27×1,81 4,13×1,27×1,81 110-430 110-600 18,5 18,5 27,9 29,6 29,8 29,6 29,8 34,2 220 220 5550 5600 4,6×1,5×2,0 4,6×1,5×2,0
Модель Ergotech 125 EXTRA Ergotech 150 EXTRA Ergotech 200 EXTRA
Узел смыкания Усилие смыкания, кН Размер плит, мм Расстояние между колоннами, мм 705×700 475×475 770×770 520×520 860×860 580×580
Узел впрыска Диаметр шнека, мм Рабочий объём цилиндра, см 3 Давление впрыска, бар Скорость впрыска, см 3 /с 430 600 35 40 45 40 45 50 168 231 293 231 323 399 2640 2020 1600 2420 1910 1550 112 146 185 122 154 191 430 600 35 40 45 40 45 50 168 231 293 231 323 399 2640 2020 1600 2420 1910 1550 142 185 234 155 196 242 600 840 40 45 50 45 50 60 231 323 399 358 442 636 2420 1910 1550 2402 1946 1351 193 244 301 173 209 330
Общие данные Насосный агрегат, кВт Установленная мощность, кВт Объём масляного бака, л Вес машины, кг Габаритные размеры (д×ш×в), м 125-430 125-600 18,5 18,5 28 30 30 30 30 34 220 220 5300 5350 4,9×1,5×2,0 4,9×1,5×2,0 150-430 150-600 22 22 31 33 33 33 33 38 220 220 6350 6400 5,3×1,5×2,0 5,3×1,5×2,0 200-600 200-840 30 30 41 41 46 43 45 53 220 220 7800 8200 5,4×1,7×2,1 5,4×1,7×2,1

Для литья двухцветных изделий применяют, в основном, машины с червячной пластикацией. При этом предусматривается чёткое разделение материалов различной окраски. При этом материал различного цвета впрыскивается в форму ограниченного объёма, где отливается первая часть изделия, а затем в форму отливается вторая часть изделия и сваривается с заранее отлитой частью.

На рис. 66 представлена схема литьевой машины для литья двухцветных изделий с чётким разделением цветов. Из материального цилиндра 6 материал одного цвета впрпыскивается в одну из форм, при этом отливается часть изделия 5.

После разъёма формы эта часть изделия вместе с полуформой 4 переносится в другую форму 8, где из материального цилиндра 7 впрыскивается материал, образующий часть изделия 9.

Плита 3 с установленными на ней полуформами 4 поворачивается гидромеханическим устройством 1, закреплённым на подвижной плите 2. Материальные цилиндры обычно располагают параллельно или так, что инжекция из одного цилиндра осуществляется в плоскость разъёма формы, а из другого цилиндра – в перпендикулярном направлении через центральный литник.

| следующая лекция ==>
Формующее оборудование | Литьевые сопла, типовые конструкции

Дата добавления: 2017-12-05 ; просмотров: 2411 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Adblock
detector