Меню

Основные узлы газотурбинных двигателей

Газотурбинный двигатель принцип работы

Газотурбинный двигатель: принцип работы и конструкция

Газотурбинный двигатель – это то, что в последнее время используется как энергетическая установка для машины.

И это связано не только с несомненными преимуществами данного агрегата.

Газотурбинный двигатель способен развить мощность, которая просто необходима некоторым автомобилям.

Конструкция

Благодаря тому, что у этого агрегата отсутствуют возвратно-поступательно двигающиеся части, а также тому, что его ротор обладает высокой частотой вращений, можно существенно уменьшить габаритные размеры и удельную массу этого двигателя (если сравнивать с дизелем). А это, в свою очередь, позволяет рассмотреть его как перспективный агрегат. Итак, чтобы создать газотурбинный двигатель своими руками (данным процессом интересуются многие – это реально, однако весьма трудно), нужно иметь турбины, камеру сгорания и компрессор. Также в его комплектацию входят стартер, масляный насос, регулятор частоты вращений и другое оборудование. Как правило, в автомобильных двигателях газотурбинного типа применяется центробежный одноступенчатый компрессор, при помощи которого давление воздуха увеличивается в 3,5 раза. Чтобы достичь указанного давления, нужно, чтобы компрессорное колесо вращалось с как можно большей скоростью. А она составляет около 420-450 метров в секунду.

Материалы

Для изготовления камеры сгорания чаще всего используется листовой жаростойкий материал. Газотурбинный двигатель в своей комплектации имеет осевую и центростремительную турбины. Они же состоят из рабочего колеса и соплового аппарата. Газ в осевой турбине, проходя по каналам, которые находятся в рабочем колесе, изменяет направление своего движения. При этом оказывается давление на лопатки. Благодаря этому образуется сила, которая приводит во вращение рабочее колесо.

Газотурбинный двигатель: принцип работы устройства

Компрессорный вал при помощи стартера приводится в движение. Пусковая частота вращения составляет 2530% от номинальной. Сжатый воздух подается компрессором в камеру сгорания, а в неё через форсунку нагнетается топливо с помощью шестеренчатого насоса. После этого посредством электрической свечи накаливания поджигается горючее. И как только устойчивая зона горения образована, последующее горючее воспламеняется от соприкосновения с огнем, а отработанные газы затем уходят в атмосферу через выпускную трубу.

Отличительные свойства

Хочется отметить, что газотурбинный двигатель обладает еще и высочайшими пусковыми качествами. Несмотря на то, что его стартер имеет достаточно небольшую производительность, он может обеспечить пуск при абсолютно любой температуре внешней среды. Это очень хорошее качество.

И еще одно его существенное преимущество – достаточно малая токсичность газов, которые отрабатываются двигателем: она в 37 раз меньше тех, которые извергает дизель. Из этого можно сделать вывод, что такой двигатель еще и безопасен для окружающей среды.

Принцип работы газотурбинного двигателя

Газотурбинный двигатель (ГТД) представляет собой разновидность теплового двигателя, в конструкции которого имеются лопаточные машины. Особенностью работы является то, что превращение энергии горящего топлива в механическую работу происходит в нем непрерывно.

В ГТД составные части рабочего цикла, включающего сжатие воздуха, отвод теплоты к рабочему телу и расширение, разобщены между собой и протекают в разных местах.

Газотурбинный двигатель может быть использован в качестве теплового двигателя на газотурбовозах и самолетах.

Газотурбинный двигатель может работать на любом виде и сорте топлива (жидкое, твердое и газообразное).

На сегодняшний день известно много конструкций и схем ГТД, отличающихся друг от друга следующими параметрами:

• условиями сжигания топлива — с внутренним и внешним сжиганием;

• использованием рабочего тела в круговом процессе — разомкнутые и замкнутые системы;

• количеством валов — одновальные, двух- и многовальные.

Рис. 2. Принципиальная схема одновального газотурбинного двигателя:

1 — корпус газовой турбины; 2 — рабочее колесо газовой турбины; 3 — топливный насос; 4 — свободный вал; 5— воздушный компрессор; 6 — воздухозаборное устройство воздушного компрессора; 7— электрическая свеча зажигания; 8— камера сгорания; 9 — направляющий аппарат; 10 — газоотвод; II — потребитель мощности; 12 — пусковой двигатель

В установках СПГГ обычно используется низкосортное топливо. Турбина работает на газе с относительно невысокой температурой (500. 600 °С), поэтому для изготовления лопаток может быть использован менее жаропрочный материал. КПД таких установок достигает 35 %, однако они имеют увеличенную массу и габариты по сравнению с дизелями с газотурбинным наддувом.

Читайте также:  Джили кулрейл тест драйв воротников

Экономичность работы ГГД можно улучшить за счет повышения температуры газов перед турбиной, использования многовальных систем, применения регенерации и утилизации теплоты уходящих газов (например, для отопления и кондиционирования воздуха в вагонах), применения промежуточного охлаждения воздуха при сжатии и промежуточного подвода теплоты к газу при его расширении. Обеспечение этих мероприятий требует применения жаропрочных сталей для лопаток турбины, использования металлокерамических материалов, воздушного охлаждения части турбины. При этом КГТД действующих установок повышается до 33. 40 %.

Существуют проектные разработки и попытки создания локомотивных газотурбинных двигателей на твердом или пылевидном топливе.

Газотурбинная установка компактна, обладает малой массой на единицу мощности, не содержит деталей с возвратно-поступательным движением, которое приводит к более быстрому износу двигателя, отличается малыми затратами на содержание оборудования. Она может работать без потребления воды, в ней легко полная автоматизация процессов, имеется реальная возможность для сжигания в камере сгорания различных видов топлива, а также имеет относительно постоянный вращающий момент на валу отбора мощности.

Особенность ГТД, применяемых в авиации, является то, что энергия сгорания топлива преобразуется в энергию истечения газов, которые с большой скоростью через выпускную систему ГТД выбрасываются в атмосферу. Тяга при работе этих двигателей возникает за счет разности количеств движения (произведения массы на скорость), выходящего из выпускной системы газовоздушного потока и входящего в приемное устройство ГТД воздуха. Тяга направлена при этом в сторону, противоположную направлению истечения газов, т. е. является реактивной. Нетрудно представить себе, что для увеличения тяги реактивного двигателя необходимо увеличить разность количеств движения, т. е. на выходе из ГТД произведение массы на скорость должно значительно превышать такую же величину на входе. Решению этой задачи служат все элементы конструкции ГТД.

Существуют три типа газотурбинных двигателей: турбореактивные, турбореактивные двухконтурные и турбовинтовые. Рассмотрим принцип работы каждого типа двигателя.

Сфера использования газотурбинных двигателей

На сегодняшний день существует несколько различных видов двигателей, которые отличаются друг от друга по принципу работы. Один из них — газотурбинный двигатель. Он создан таким образом, что, переняв все ключевые достоинства бензиновых и дизельных поршневых двигателей, получил ряд неоспоримых преимуществ.

Газотурбинный двигатель, принцип работы которого заключается в проведении топлива через ряд турбинных лопастей, приводит их в движение с помощью расширяющегося газа. Он относится к моделям внутреннего сгорания. Газотурбинные двигатели делятся на одно- и двухвальные. Их КПД прямо пропорционален температуре сгорания топлива. Самые элементарные модели — одновальные, имеющие единственную турбину. Двухвальные не только сложнее в устройстве, но и способны выдерживать большие нагрузки.

Как правило, газотурбинные двигатели используются в грузовых автомобилях, кораблях и локомотивах. Производятся опыты по разработке таких механизмов для легковых автомобилей.

В настоящее время существует большое количество моделей таких двигателей, многие из которых значительно превосходят своих предшественников большей производительностью, меньшими размерами, габаритами и весом. Также газотурбинный двигатель является более безопасным и нейтральным для окружающей среды. Он производит меньше шума и вибрации, а также расходует намного меньше топлива. Это основные преимущества, которыми обладает газотурбинный двигатель.

Именно газотурбинные механизмы подарили человечеству множество современных возможностей. Без них не существовали бы трансконтинентальные перекачки газа и перелеты больших авиалайнеров на большие расстояния. Газотурбинный двигатель способен вырабатывать огромное количество энергии с минимальными затратами топливных ресурсов. Он представляет собой самую сложную технологическую конструкцию среди всех, что были разработаны за прошедший век.

Итак, газотурбинный двигатель являет собой одно из самых грандиозных открытий двадцатого века, благодаря которому человечество получило колоссальные возможности для совершенствования технологий. Особенно ценным вкладом данной разработки становится то, что она позволяет экономить топливные ресурсы и практически не несет вреда окружающей среде, что крайне важно в наше время глобальных экологических кризисов.

Основные конструктивные элементы ГТД (ЖРД)

Н’-В – входное устройство;

В-К – компрессор;

К-Г – камера сгорания;

Г-Т – турбина;

Т-Т’ – выходной канал;

Т’-С – выходное сопло.

 Входное устройство

Входное устройство предназначено для забора воздуха из окружающей среды и его первоначального сжатия. Оно состоит из корпуса и специального внутреннего тела, которые связаны между собой радиальными стойками.

Читайте также:  Как рассчитать выхлоп под двигатель

В радиальных стойках и специальном внутреннем теле входного устройства выполнены отверстия, которые позволяют функционировать противообледенительным системам. Из пятой-седьмой ступени компрессора осуществляется забор воздуха, который по магистралям подается в радиальные стойки и тело, а затем в выполненные в них отверстия.

Рядом с радиальной стойкой устанавливается поворотная лопатка. Поворот лопатки обеспечивает необходимый угол поступлении воздуха в компрессор для обеспечения оптимальной степени сжатия.

‚ Компрессор

Компрессор предназначен для сжатия воздуха до расчетной величины. Он состоит из нескольких ступеней, каждая из которых обеспечивает определенную степень сжатия. В современных двигателях их число изменяется от 7 до 9.

Ступень компрессора – это сочетание подвижной лопатки, закрепленной на рабочем колесе, и жестко закрепленной неподвижной лопатки.

Лопаточный аппарат формирует канал сужающегося типа.

В современных двигателях в 3 первых ступенях компрессора сопловые лопатки поворачиваются вокруг своей оси, что позволяет выровнять степень сжатия в зависимости от условий полета.

Для компрессора характерны негативные явления – помпаж. Помпаж характеризуется 2 факторами:

1. неравномерность давления по высоте лопаточной машины компрессора

2. превышение давления в компрессоре выше номинальной величины

В целях борьбы с помпажом в районе пятой-седьмой ступени компрессора выполняют отверстия в его наружном корпусе, которые закрываются лентами перепуска. Когда давление в компрессоре превышает номинальную величину, срабатывает система автоматики и лента перепуска поднимается вверх, открывая проточную часть, что позволяет стравить воздух из компрессора в окружающую среду. Для борьбы с первым фактором помпажа перед компрессором устанавливают направляющий аппарат, состоящий из ряда направляющих лопаток и поворотных лопаток. Изменение угла входа воздуха в компрессор за счет поворотных лопаток позволяет обеспечить равномерность давления и регулировать степень сжатия, доводя ее до оптимальной.

После компрессора воздух поступает в камеру сгорания.

ƒ Камера сгорания

Камера сгорания состоит из наружного корпуса и внутреннего корпуса, внутри которого установлена жаровая труба. В жаровой трубе расположена тарелкообразное радиальное тело с форсункой.

Газовый поток, поступая в камеру сгорания, разбивается на 2 составляющие:

· первичный поток, поступающий в жаровую трубу через каналы, образованные лопатками тарелкообразного тела;

· вторичный поток, направленный в полость между корпусом камеры сгорания и жаровой трубой.

Каналы тарелкообразного тела спрофилированы таким образом, что после их прохождения происходит снижение скорости воздушного потока и его турбулизация на выходе из них. В результате в первой части камеры сгорания наблюдается устойчивый и полный процесс горения в период впрыскивания керосина и отпрыска газовой смеси с помощью электрической искры зажигания. Керосин подается в форсунку, и с помощью электрической свечи осуществляется поджиг керосина и газовой смеси.

В жаровой трубе выполнены многочисленные отверстия для турбулизации потока воздуха и за счет вторичного потока воздуха для создания пограничного слоя на внутренней поверхности жаровой трубы. Организация охлаждающего пограничного слоя необходима, иначе стенки жаровой трубы прогорят. (Внутри камеры сгорания в ядре потока температура горения достигает 2500-3500 К.)

Второй поток воздуха поступает в полость между жаровой трубой и корпусом камеры сгорания и проходит в каналы, выполненные в жаровой трубе.

Назначение вторичного потока воздуха:

1) создание пограничного слоя в пристеночном пространстве жаровой трубы на внутренней ее поверхности для снижения температурного поля и температурной нагрузки;

2) смешение основного и более холодного газовых потоков с целью снижения температуры газового потока, выходящего из жаровой трубы, до расчетной температуры газа на входе в лопаточную машину турбины. (На форсажном режиме эта температура может достигать 1850 К.)

„ Газовая турбина

Турбина предназначена для раскрутки лопаточной машины компрессора. В ней происходит обратный термодинамический процесс, т.е. если в компрессоре воздух сжимается, то в турбине происходит расширение газов.

Лопаточная машина турбины, в отличие от лопаточной машины компрессора, формирует канал расширяющегося типа.

Факторы, действующие на противоположные действия компрессора и турбины:

1. в компрессоре первая лопатка подвижная, она закреплена на рабочем колесе; а в турбине первая лопатка неподвижная, сопловая;

2. канал компрессора сужающийся, а канал турбины расширяющийся;

Читайте также:  Тойота королла через сколько менять масло двигатель

3. компрессор и турбина – это две противоположно профилированные лопаточные машины.

Турбина состоит из нескольких ступеней. В современных двигателях их число изменяется от 2 до 4.

Ступень турбины – это сочетание жестко закрепленной сопловой лопатки и рабочей лопатки, установленной на вращающемся рабочем колесе.

Для обеспечения современного уровня температур лопатки выполняются охлаждаемыми, т.е. с конвективным, загородительным и пленочным охлаждением.

В первых ГТД температура газа не превышала 1300 К. В дальнейшем температуру газа удалось поднять 1750 К, а в опытных образцах – до 2000 К. Добиться повышения температуры газа удалось за счет:

1. 1.разработки новых перспективных сплавов из жаростойких материалов;

2. разработок технологий методов литья (столбчатая кристаллизация);

3. организации систем охлаждения как сопловых, так и рабочих лопаток турбины.

В современных двигателях от 3 до 5% воздуха расходуется на охлаждение турбины.

Выходной канал

За турбиной находится выходной канал, который формируется специальным внутренним телом. Этот канал – расширяющегося типа. Крепление внутреннего тела осуществляется с помощью радиальной стойки. Выходное сопло предназначено для увеличения кинетической энергии реактивной газовой струи и, соответственно, тяги.

Применение компрессора и турбины приводит к тому, что процессы сжатия и расширения происходят в два этапа: соответственно во входном устройстве и компрессоре – сжатие и в турбине и выходном сопле – расширение газового потока. При этом давление за турбиной должно быть таким, чтобы получаемый в ней перепад давлений позволял иметь требуемую мощность.

ЖРД

ЖРД в общем случае состоит из камер, турбонасосных агрегатов, газогенераторов, агрегатов автоматики, устройств для создания управляющих усилий, рамы, трубопроводов и вспомогательных устройств. ЖРД очень многообразны. Ниже рассматривается схема изучаемого образца двигателя. По такой схеме выполнен отечественный ЖРД РД-214. Этот двигатель имеет насосную систему подачи компонентов топлива, однокомпонентный газогенератор, работает без дожигания генераторного газа. Он устанавливается на первой ступени ракеты-носителя «Космос». Основные элементы двигательной установки включают:

· баки основного топлива (1);

· бак вспомогательного топлива (2) (80 % -ый раствор Н22);

· перогазогенератор (реактор) (3);

· насосы горючего и окислителя (4);

· насос вспомогательного топлива (Н2О2) (5);

· камеру двигателя (7) (двигатель РД-214 включает блок из четырех камер, для упрощения рисунка на нем изображена одна камера);

· агрегаты автоматики (8);

· отбросное сопло (9).

Двигатель работает на высококипящем азотнокислотном окислителе и продуктах переработки керосина в качестве горючего. Его тяга (для блока четырех камеру) в пустоте составляет 740 кН.

Камеры двигателя жестко связаны по двум поясам болтами. Камеры — паяно-сварные, состоят из:

Смесительная головка обеспечивает подвод компонентов топлива в камеру сгорания и их распыливание. В камере сгорания осуществляются процессы смесеобразования и сгорания компонентов топлива,

Камера имеет двойные стенки, между которыми установлены гофрированные проставки с продольными, вдоль оси, гофрами. С помощью пайки проставки связывают стенки камеры друг с другом, Для охлаждения камеры двигателя используется горючее, которое подается по двум патрубкам в коллектор на сверхзвуковой части сопла и по зазору между ее стенками поступает в смесительную головку. Камера изготавливается из хромоникелевых сталей аустенитно-мартенситного класса.

На блок камер двигателя, устанавливается турбонасосный агрегат (ТНА). ТНА состоит из турбины и трех центробежных насосов (окислителя, горючего и перекиси водорода). ТНА предназначен для подачи окислителя и горючего в камеру двигателя и перекиси водорода в парогазогенератор (реактор). Подача компонентов осуществляется насосами, которые приводятся в действие газовой турбиной. При изменении частоты вращения ТНА изменяется расход компонентов топлива в камеру двигателя. Этим дости­гается регулирование тяги.

Турбина и насосы расположены на одном валу. Рабочим телом для турбины является парогаз, образующийся в реакторе. Парогаз, имеющий температуру около 800 К, подается под давлением Па в сопла турбины и затем на лопатки рабочего колеса. Отработанный парогаз собирается в выхлопном коллекторе турбины и отводится по выхлопным трубам к отбросным соплам, установленным на корпусе ракеты. Корпусы насосов, крышки, центробежные колёса изготавливаются из алюминиевых сплавов. Диск турбины, рабочие лопатки, вал выполняются из стали.

Adblock
detector