Машины баз данных
В конце второго тысячелетия человечество шагнуло из индустриальной эры в эру информационную. Если раньше главными были материальные ресурсы и рабочая сила, то теперь решающими факторами развития общества становятся интеллект и доступ к информации. В информационном обществе люди в основном будут заняты в сфере создания, распределения и обмена информации, а каждый человек сможет получить необходимые продукт или услугу в любом месте и в любое время.
Как известно, основной инструмент хранения и переработки информации — электронные вычислительные машины (ЭВМ). Переход к информационному обществу сопровождается лавинообразным ростом объемов информации, хранимой в них. Это в свою очередь порождает проблему эффективной организации и поиска информации. Для представления в машинах больших объемов данных используются технологии баз данных. База данных представляет собой совокупность структурированных и взаимосвязанных данных, хранимых более или менее постоянно в ЭВМ на магнитных (пока) носителях, и используемых одновременно многими пользователями в рамках некоторого предприятия, организации или сообщества. Для работы с базами данных используется специальное системное программное обеспечение, называемое СУБД (Система управления базами данных). Вычислительный комплекс, включающий в себя соответствующую аппаратуру (ЭВМ с устройствами хранения) и работающий под управлением СУБД, называется машиной баз данных.
Первые такие машины появились во второй половине 60-х годов ушедшего века. В настоящее время на рынок программного обеспечения поставляются сотни различных коммерческих СУБД практически для всех моделей ЭВМ. До недавнего времени большинство машин баз данных включали в себя только один процессор. Однако в последнее десятилетие возник целый ряд задач, требующих хранения и обработки сверхбольших объемов данных. Один из наиболее впечатляющих примеров решения задач такого типа — создание базы данных Системы наблюдения Земли. Эта система (Earth Observing System, EOS) включает в себя множество спутников, которые собирают информацию, необходимую для изучения долгосрочных тенденций состояния атмосферы, океанов, земной поверхности. Спутники поставляют на Землю 1/3 петабайт информации в год (petabyte — 10 15 байт), что сопоставимо с объемом информации (в кодах ASCII), хранящейся в Российской государственной библиотеке. Полученная со спутников, она накапливается в базе данных EOSDIS (EOS Data and Information System) невиданных прежде размеров.
Другая грандиозная задача, тоже требующая использования сверхбольших баз данных, ставится в проекте создания Виртуальной астрономической обсерватории. Такая обсерватория должна объединить данные, получаемые всеми обсерваториями мира в результате наблюдения звездного неба; объем этой базы составит десятки петабайт. Очевидно, даже самые мощные однопроцессорные ЭВМ не справятся с обработкой этого потока.
Естественное решение проблемы обработки сверхбольших баз данных — использовать в качестве машин баз данных многопроцессорные ЭВМ, позволяющие организовать параллельную обработку информации. Интенсивные исследования в области параллельных машин были начаты в 80-х годах. В течение последних двух десятилетий такие машины проделали путь от экзотических экспериментальных прототипов, разрабатываемых в научно-исследовательских лабораториях, к полнофункциональным коммерческим продуктам, поставляемым на рынок высокопроизводительных информационных систем.
В качестве примеров успешных коммерческих проектов создания параллельных систем баз данных можно назвать DB2 Parallel Edition [1], NonStop SQL [2] и NCR Teradata [3]. Подобные системы объединяют до тысячи процессоров и магнитных дисков и способны обрабатывать базы данных в десятки терабайт. Тем не менее и в настоящее время здесь остается ряд проблем, требующих дополнительных научных изысканий. Одно из них — дальнейшее развитие аппаратной архитектуры параллельных машин. Как указывается в Асиломарском отчете о направлениях исследований в области баз данных [4], в ближайшее время крупные организации будут располагать базами данных объемом в несколько петабайт. Для обработки подобных объемов информации потребуются параллельные машины с десятками тысяч процессоров, что в сотни раз превышает их число в современных системах. Однако традиционные архитектуры параллельных машин баз данных вряд ли допускают простое масштабирование на два порядка величины.
степени зависят от аппаратной архитектуры параллельной машины баз данных.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Урок 2
Компьютер — универсальная машина для работы с информацией
Ключевые слова:
• универсальный объект
• компьютер
• аппаратное обеспечение
• техника безопасности
Что умеет компьютер
Вся информация, поступающая к человеку, состоит из сигналов. Известно, что таких сигналов человек получает значительно больше, чем в состоянии обработать его мозг. Кроме того, человек так устроен, что он:
• не может воспринять непонятную ему информацию;
• необъективен, т. е. зачастую воспринимает информацию не такой, какая она есть, а такой, какой она ему кажется;
• быстро устаёт и может ошибаться, обрабатывая информацию;
• не может долго хранить информацию: если не закреплять знания постоянными упражнениями, информация очень быстро забывается.
Справляться с этими проблемами человеку помогает компьютер. Он облегчает умственный труд человека, помогает справиться с гигантскими объёмами информации.
Сегодня компьютер является незаменимым помощником человека в любой сфере деятельности. Без компьютеров невозможно представить себе работу банков, магазинов, больниц, школ, других учреждений. Без компьютеров не обойтись при подготовке к изданию книг и журналов, в научных и инженерных расчетах, при создании спецэффектов в кино и на телевидении и во многих других случаях. С помощью компьютера человек может рисовать, слушать мелодии, смотреть мультфильмы и делать многое другое.
В Единой коллекции цифровых образовательных ресурсов (sc.edu.ru) размещена анимация «Компьютер, его роль в жизни человека». Она позволит вам сравнить задачи, решаемые с помощью компьютеров несколько десятилетий тому назад и в наши дни.
Объект, пригодный для многих целей, выполняющий разнообразные функции, называют универсальным.
Компьютер — универсальная машина для работы с информацией. Слово «универсальный» подчёркивает, что компьютер может применяться для многих целей: обрабатывать, хранить и передавать самую разнообразную информацию, использоваться в самых разных видах человеческой деятельности.
Изучением всевозможных способов передачи, хранения и обработки информации занимается наука информатика. Хранить, обрабатывать и передавать информацию человеку помогает компьютер.
Самую разнообразную информацию, представленную в форме, пригодной для обработки компьютером, называют данными. За малое время компьютер способен обработать большое количество данных.
Компьютер обрабатывает данные по заданным программам.
В отличие от человека компьютер не может думать. Он выполняет только то, что ему предписано. Часто говорят о компьютерных ошибках, но, как правило, это ошибки людей, разработавших неверные программы для компьютера.
Как устроен компьютер
Главным в компьютере является системный блок, включающий в себя процессор, устройства оперативной памяти (микросхемы памяти), жёсткий диск, блок питания и др. (рис. 2).
Заглянуть внутрь системного блока вы можете с помощью интерактивного ресурса «Составляющие системного блока», размещённого в Единой коллекции цифровых образовательных ресурсов (sc.edu.ru).
Процессор предназначен для обработки данных и управления работой компьютера.
Память компьютера служит для хранения данных и делится на оперативную и долговременную.
В оперативную память помещаются все программы и данные, необходимые для работы компьютера. Процессор может мгновенно обращаться к информации, находящейся в оперативной памяти. После отключения источника питания вся информация, содержащаяся в оперативной памяти, теряется.
Как устроен компьютер
Тег video не поддерживается вашим браузером. Скачайте видео.
Для длительного хранения информации используется жёсткий диск — устройство долговременной памяти.
Дополнительную информацию о жёстком диске и других устройствах долговременной памяти читайте в электронном приложении к учебнику.
Клавиатура применяется для ввода информации в память компьютера.
Монитор предназначен для вывода информации на экран или, ещё говорят, для отображения информации на экране.
Мышь — одно из основных устройств ввода, предназначенное для управления компьютером.
К персональному компьютеру могут подключаться дополнительные устройства:
• джойстик (для управления компьютером во время игры);
• сканер (для ввода графических изображений в память компьютера непосредственно с бумажного оригинала);
• микрофон (для ввода звуковой информации);
• принтер (для вывода информации на бумагу);
• акустические колонки или наушники (для вывода звуковой информации).
Существуют и другие устройства. Все они составляют аппаратное обеспечение компьютера.
Запомнить внешний вид и названия компьютерных устройств вам поможет игра «Пары» из электронного приложения к учебнику.
САМОЕ ГЛАВНОЕ
Изучением всевозможных способов передачи, хранения и обработки информации занимается наука информатика. Хранить, обрабатывать и передавать информацию человеку помогает компьютер — универсальная машина для работы с информацией.
В аппаратном обеспечении компьютера различают устройства ввода, обработки, хранения и вывода информации. Устройства ввода информации — это клавиатура, мышь, сканер, микрофон и др. Устройство обработки информации — процессор. Устройства хранения информации — оперативная память, внешняя память на жёстких дисках. Устройства вывода информации — монитор, принтер, акустические колонки.
При работе за компьютером необходимо быть предельно внимательным и соблюдать все требования техники безопасности, следить за правильной организацией своего рабочего места.
Вопросы и задания
1. Для чего человеку понадобился компьютер?
2. Что означает слово «универсальный»? Почему компьютер является универсальной машиной для работы с информацией?
3. Какими «профессиями» владеет компьютер? Подготовьте краткое сообщение об одной из них.
Вам будет легче ответить на этот вопрос после просмотра презентации «Компьютер на службе у человека», входящей в состав электронного приложения к учебнику.
4. Вспомните известные вам компьютерные программы. Для чего они предназначены?
5. Что изучает наука информатика?
6. Из каких основных устройств состоит компьютер?
7. Как называется устройство обработки информации?
8. Какие вы знаете устройства хранения информации?
9. Скорее всего, ваши компьютеры уже не работают с дискетами — гибкими магнитными дисками, помещёнными в защитный пластиковый корпус. Но практически в каждой компьютерной программе, предназначенной для создания информации того или иного вида, есть команды, графическим образом которых является дискета. Какие это команды?
10. Что входит в состав аппаратного обеспечения компьютера?
11. Какие правила техники безопасности необходимо соблюдать в компьютерном классе?
12. Как правильно организовать своё рабочее место за компьютером?
Вычислительные машины
Вычислительные машины, являются неотъемлемой частью современной жизни. В повседневной жизни человек ежесекундно сталкивается с разного рода вычислениями или результатом таковых.
В процессе своего развития вычислительная техника прошла долгий путь эволюции от простейших палочек для вычисления до машин, способных выполнить любое математическое действие в тысячные доли секунды.
Самым простым примером продвинутой вычислительной машины, является компьютер, который постоянно принимает, обрабатывает и передает данные. Весь текст и картинки, которые видны на экране для компьютера, выглядят как бинарный код из «1» и «0».
В зависимости от порядка расположения «1» и «0» вычислительная машина выводит на экран тот или иной символ.
История развития вычислительных машин
История развития вычислительных машин начала еще в древние времена, когда для выполнения простейших вычислительных операций, человек использовал средства для визуализации счета.
Первыми известными приспособлениями для вычисления являются счетные палочки. Далее, в процессе эволюции счетные палочки изменили свой внешний вид. Например, во многих религиях для отсчета количества прочитанных молитв стали применять четки.
Не так давно, на одном из античных судов было найдено устройство, которое могло выполнять простые математические операции. Главной особенностью этой находки, являлось назначение устройства: механизм был создан для вычисления лунных фаз и, скорее всего, использовались как календарь.
Ученые пришли к выводу, что технология производства такой машины была утеряна, и более человеку не удавалось создать подобного аппарата вплоть до эпохи процветания.
Греческие купцы, имели при себе специальные таблички, на которых была изображена своеобразная система подсчета, отдаленно напоминающую современную таблицу умножения.
Для определения качественных характеристик таких, как килограммы, для подсчета использовались простые весы. Процесс вычислений заключался в следующем: прибор оценивал вес изделия, переводя его в числовое значение.
Процесс эволюции систем для счета происходил в следующей хронологии:
- палочки непера;
- логарифмические таблицы и линейки;
- номограммы;
- перфокарты;
- механические вычислительные машины;
- программные машины.
Разработка вычислительных машин не стоит на месте. Ученые говорят о скором появлении оптического или фотонного вычислителя, который сможет работать в 1000 раз быстрее, чем обыкновенный компьютер.
Первые механические вычислительные машины
Главное отличие механической вычислительной техники от современной заключается в использовании при вычислениях механической силы. В механических приборах алгоритмы запускались при помощи шестерней и рычагов, и требовали ручного ввода информации.
Долгий путь эволюции такой вычислительной техники отмечен созданием двух наиболее продвинутых аппаратов Паскаля и Бэббиджа. Эти механические вычислительные машины разработаны в разные времена и использовали прогрессивные методы подсчета чисел.
Вычислительная машина Бэббиджа
Машина Бэббиджа – это универсальный вычислительный прибор, который так и не был создан. До нашего времени дошли чертежи этой машины, на основе которой современные ученые собрали прототип машины и доказали, что разработка была удачной.
Английский математик Чарльз Бэббидж при создании своей машины опирался на труды предшественников 18 века. Основополагающими трактатами для разработки проекта стала работа немецкого ученого Иоганна Мюллера. Книга о механических вычислениях, изданная в 1788 году и труды Гаспара де Порни по созданию иерархической структуры для организации массовых вычислений.
Разностная машина, которая впервые была описана Бэббиджем в 1822 году в своей книге, могла считать значения многочленов до шестой степени. В том же 1822 году, ученый приступил к созданию своего аппарата, сразу по старту проекта, который спонсировало правительство, начались трудности.
Механические вычисления, требовали высочайшей точности в производстве деталей. Небольшие отклонения в расчетах могло привести к высокой погрешности в результате.
Подрядчик, который взялся изготавливать оборудование и запчасти для вычислительной машины, не смог выполнить детали с необходимой точностью. Поэтому машина так и не была собрана, а финансирование проекта в скором времени прекратилось. По оставшимся документам, вычислительный механизм собрали уже в конце 20 века.
Вычислительная машина Паскаля
Ученый Блэз Паскаль вырос в семье французского сборщика налогов. Главной мотивацией для создания суммирующей машины, стало стремление облегчить процесс подсчета налогов. В 1642 году Паскаль занялся разработкой методов и алгоритмов работы будущего устройства.
Счетная машина, которую ученый назвал «Паскалита», представляла собой ящик с наборными колесами. Путем вращения колес вводилось необходимое число, а в верхней части в специальных «окошках», пользователь мог увидеть сумму введенных чисел.
Первоначально, машина могла считать в пределах четырехзначных чисел. В процессе усовершенствования, машина снабдили 8 оконцами, что позволило вести вычисления для более крупных чисел и сложных выражений.
Несмотря на успех, который принесла Паскалю его суммирующая машина, больших объемов продаж добиться не удалось. Это было связано с высокой стоимостью запчастей и сложностями производства.
Хотя именно принцип передачи информации в машине, путем движения связанных между собой колес, более трех веков использовался в производстве и разработке счетных машин по всему миру. Машина Паскаля, была одной из первых реально работающих образцов механической вычислительной техники.
Классификация вычислительных машин
Все вычислительные машины можно разделить на три одинаковые группы, различия которых заключается в методах исчисления данных и способах обработки.
- ЦВМ – цифровая вычислительная машина, принцип действия которой направлен на работу с потоком данных, вводимых в виде цифр и чисел, такие машины являются простейшим видом вычислительной техники.
- АВМ – аналоговые вычислительные машины, принцип действия которых заключается в работе с данными выраженными в единицах величины (кг, Вт, ед.) Самым ярким примером такой вычислительной машины – является электрический счетчик.
- ГВМ – гибридные вычислительные машины, принцип действия которых основан на объединении вычислений нескольких разных величин, может выполнять действия между числами и единицами, по сути, объединяя в себе работу ЦВМ и АВМ.
Вычислительные комплексы, системы и сети
К вычислительным комплексам, системам и сетям, относится группа вычислительной техники, которая работает в одном направлении и обеспечивает расчет необходимых величин по данным из нескольких источников. Самым обычным примером вычислительной сети – является компьютерная сеть. Как правило, такие группы оборудования применяются в промышленности, для достижения оптимизации вычислений.
Механические вычислительные машины
В современном виде вычислительные механические машины – это довольно сложное и точное оборудование. Самой распространенной формой механических вычислительных машин являются разнообразные счетчики.
К примеру, в каждом автомобиле, есть прибор указывающий путь пройденный техникой и ее скорость. Движение выражено сразу в двух единицах: километрах в час и просто в километрах. В данном случае, задача вычислительной машины — конвертирование механического действия в определенные величины.
Цифровые вычислительные машины
В цифровых вычислительных машинах, алгоритм расчетов производится, благодаря поступлению определенных дискретных значений, которые в свою очередь после подсчета выводятся на экран в виде цифрового значения.
Большинство ЦВМ используют импульсы или специальный, общепринятый двоичный код. Это сделано, для того чтобы вычислительные комплексы и системы, могли обмениваться между собой информацией «понятной» для всех машин.
Аналоговые вычислительные машины
Главным отличием аналоговой машины от цифровой или механической является беспрерывность действий по обработке данных. При этом вычисления могут вести за собой какое-то механическое, гидравлическое или электронное действие.
Самым ярким примером, является автоматическая коробка передач у автомобиля, которая постоянно получает данные о режимах работы двигателя и соответственно произведенным расчетам переключает скорости.
Электромеханические вычислительные машины
История первых электромеханических машин, начинается вместе с созданием нового электронного элемента – реле. Ведущие разработчики, сразу оценили возможность переделывать механическое движение в определенный электрический код при помощи реле.
Сразу несколько групп инженеров начали заниматься такими машинами в тридцатых годах двадцатого века. В это время развитие электроники пошло быстрее и разработку электромеханических счетных машин быстро закрыли. За неполные 7 лет разработок, на основе релейного действия, было создано две машины – «Марк 1» и «Марк 2».
На современном производстве применение электромеханических машин сведено к минимуму из-за появления более продвинутого оборудования.
Релейные вычислительные машины
После того как электрические реле стали набирать популярность, было создано несколько машин, которые при помощи механической силы могли вести определенные вычисления. Через некоторое время механическую силу полностью заменили силой тока, которая и питала релейную установку.
Первая удачная и надежная машина – РВМ-1 (Релейно вычислительная машина) была создана в 1957 году. Устройство использовало в работе одновременно 550 реле. Скорость подсчета такой машины была 0,5 секунд на выполнение одной операции, при этом устройство могло работать постоянно – без остановок.
РВМ-1 применялась на протяжении 10 лет в финансовой системе. Последний раз на территории нашей страны ее запускали для пересчета финансовой системы СССР в 1967 году. Именно тогда была зафиксирована самая большая нагрузка, и за одну секунду машина смогла выполнить до 20 операций умножения крупных чисел.
Простые вычислительные машины
Примером простых вычислительных машин является самый простой калькулятор. Первые машины этого вида начали выпускаться во второй половине 20-го века. Простая вычислительная машина нуждается в помощи оператора, задачей которого является ввод цифр. Пик развития таких машин пришелся на восьмидесятые года 20 века, а их вид практически не изменился.
Простые вычислительные машины, рассчитаны на обработку таких действий, как:
Упоминание единичных простых машин, можно встретить и в более раннем периоде. Но тогда большой популярностью простые вычислительные машины не пользовались из-за высоких требований к знаниям оператора машины и большой себестоимостью.
Производители и поставщики вычислительных машин
Современные вычислительные машины, в 90% случаев являются персональными компьютерами, на которых установлены специальные программы, позволяющие выполнять необходимые вычисления мгновенно.
Среди представителей этой индустрии можно отметить компании: «НИКС», DNS, Meijin, «МЦСТ», «Т-Платформы» и другие.
Мировыми лидерами являются компании Intel и Kingston. Серверное оборудование является большой вычислительной машиной, которая постоянно обрабатывает и передает данные.
Крупным производителем серверов является компания Dell. На продукции этой компании в мире работает около 23% серверов различного профиля и назначения.
Поставками вычислительной техники занимаются крупные торговые сети, специализирующиеся на компьютерном обеспечении. Заказ партии вычислительных машин можно сделать по интернету или в самом магазине. Некоторые из этих компаний имеют собственные производства по сборке оборудования. Среди поставщиков можно выделить сеть магазинов «Кей», «Ситилинк», «Юлмарт».
Больше о производителях и поставщиках вычислительных машин можно узнать на ежегодной выставке «Связь».