Меню

Машины предназначенные для создания потока перемещения жидкости называют

Основные определения. Насос — машина для создания потока жидкой среды

Основы гидропривода

Насос — машина для создания потока жидкой среды. Разли­чают динамические и объемные насосы. В динамическом насосе жидкая среда перемещается под силовым воздействием на нее в камере, постоянно сообщающейся со входом и выходом насоса. В объемном насосе жидкая среда перемещается путем периодического изменения объема занимаемой ею камеры, попеременно сообщающейся со входом и выходом насоса.

Объемный гидродвигатель — машина, предназначенная для преобразования энергии потока рабочей среды в энергию движе­ния выходного звена.

Объемные насосы и гидродвигатели (объемные гидромашины) являются энергопреобразователями объемных гидравлических приводов, под которыми понимают совокупность устройств, пред­назначенных для приведения в движение механизмов машин по­средством жидкой рабочей среды под давлением.

Объемный гидропривод определяется так же как гидравличе­ская система, включающая объемные насос и гидродвигатель с соответствующей аппаратурой (устройствами) управления. Эта система служит для передачи посредством жидкости энергии на расстояние, и преобразования ее в механическую работу на вы­ходе системы с одновременным выполнением функций регулирова­ния и реверсирования скорости выходного звена гидродвигателя, а также преобразования одного вида движения в другой. Это преобразование в объемных гидромашинах происходит в резуль­тате вытеснения жидкости из рабочих камер насоса при движении вытеснителей или наполнении этих камер жидкостью под давле­нием в гидродвигателе, т. е. в этих машинах используется энергия давления. Расчетный объем жидкости, вытесняемый в единицу времени из рабочих камер насоса, или поступающий в рабочие камеры гидродвигателя, называют теоретической подачей. Или, иначе, под объемной подачей насоса понимают отношение объема подаваемой жидкости к времени его подачи.

Подачей или расходом жидкости называется, в общем случае, объем жидкости, прошедшей через данное сечение канала (трубопровода) в единицу времени. Величина его Q определяется как произведение средней скорости течения V на площадь f поперечного сечения канала:

где V — объем жидкости, t — время.

Применяют также термин «объемная гидропередача», под которым понимают часть объемного гидропривода, состоящую из объемного насоса, объемного гидродвигателя и соединяющих их гидролиний (магистралей).

Объемным насосом называют гидравлическую ма­шину, преобразующую приложенную к входному его звену (валу) внешнюю механическую энергию в гидравлическую энергию по­тока жидкости. Объемной гидромашинной называют машину, преобразующую механическую энергию привода в потен­циальную энергию потока жидкости (рабочей среды) — при работе машины в генераторном (насосном) режиме и обратно в механи­ческую энергию на выходе гидродвигателя — при работе машины в двигательном режиме. Под рабочей средой понимается рабочая жидкость в объемном гидроприводе и рабочий газ в пневмоприводе.

Объемная гидромашина, предназначенная для работы как в режиме объемного насоса, так и в режиме объемного гидро­мотора, называется насос-мотором. Насосный агрегат с комплек­тующим оборудованием, смонтированным по определенной схеме, обеспечивающей работу насоса, называют насосной установкой.

Всякая объемная гидравлическая машина имеет рабочий орган, который состоит из нескольких взаимодействующих дета­лей определенной геометрической формы, образующих полость изменяемого объема, заполняемую рабочей жидкостью во время нахождения ее во входной камере машины. При достижении по­лостью выходной камеры объём этой полости уменьшается и жидкость выталкивается (вытесняется) в выходную камеру. Для осуществления указанных функций в объемной гидромашине имеется устройство, которое герметично замыкает (ограничивает) вытесняемый объем, а также вытеснитель, изменяющий этот объем в процессе рабочего хода.

Детали, образующие полости изменяемого объема и отделяю­щие входную полость от выходной, являются основными деталями всякой объемной гидромашины. Требованиями к этим деталям являются обеспечение герметичности изменяемого объема, пре­пятствующей вытеканию жидкости из полостей высокого давления, а также обеспечение жесткости конструкции этих полостей. Форма вытеснителей и способ замыкания вытесняемого объема определяет кинематику и конструктивный тип гидромашины.

В гидропередачах жидкостным звеном устанавливают геомет­рические или силовые связи между соединениями или механи­ческими звеньями. Геометрические связи жидкостным звеном осуществляют при помощи определенного геометрически изолиро­ванного объема жидкости, ввиду чего гидропередачи с этой связью называются объемными. Кинематика таких механизмов может быть независимой от нагрузок, и соотношения между кинемати­ческими и нагрузочными показателями режима можно рассматри­вать раздельно.

Если жидкостным звеном установлены между соединяемыми им механическими звеньями силовые связи, то гидропередача называется динамической. Кинематика ее существенно зависит от приложенных нагрузок на выходном валу и не может рассмат­риваться самостоятельно. Иначе говоря, такие механизмы не об­ладают собственной кинематикой, и обратная связь в них осу­ществляется по нагрузке. Под нагрузкой понимается комплекс статических и динамических сил, действующих на выходное звено гидродвигателя при его движении по заданному закону.

Вытеснение жидкости из рабочих камер насоса и заполнение ею всасывающих камер происходит в результате уменьшения и соответственно увеличения геометрического объема этих камер, герметически отделенных друг от друга. Рабочим органом, непо­средственно совершающим работу вытеснения, является в объем­ном насосе вытеснитель — поршень (плунжер), пластины, зубча­тое колесо, диафрагма и т. д.

Рабочий ход в гидродвигателе осуществляется в результате увеличения объема рабочих камер под действием поступающей в них жидкости под давлением. Под рабочей камерой насоса (или гидромотора) понимается ограниченное изолированное простран­ство, образованное деталями насоса с периодически увеличиваю­щимся и уменьшающимся при работе насоса объемом и попеременно сообщающееся соответственно с нагнетательным и всасы­вающими каналами (с приемной или отдающей полостью гидромашины).

Применяется также термин объемная гидромашина: рабочий процесс в такой машине основан на попеременном заполнении рабочей камеры рабочей жидкостью и вытеснения ее из камеры. В соответствии с этим объемная гидромашина определяется так же как устройство, предназначенное для преобразования энергии движения входного звена в энергию потока жидкости или энер­гии потока жидкости в энергию движения выходного звена в про­цессе попеременного заполнения рабочей камеры жидкостью и вытеснения ее из камеры.

В гидравлических приводах (системах) применяют преиму­щественно роторные насосы, под которыми понимают объемные насосы с вращательным или вращательным и возвратно-посту­пательным движением рабочих органов независимо от характера движения ведущего звена насоса.

Реже применяют возвратно-поступательные насосы — объем­ные насосы с прямолинейным возвратно-поступательным движе­нием рабочих органов независимо от характера движения веду­щего звена. В качестве перекачивающих распространены прямодействующие насосы, под которыми понимают объемные насосы с возвратно-поступательным движением веду­щего звена.

Используются также роторно-вращательные насосы — ротор­ные с вращательным движением рабочих органов и роторно-посту­пательные насосы — роторные с вращательным и возвратно-по­ступательным движением рабочих органов.

Читайте также:  Схема поочередного включения двух двигателей

В зависимости от типа применяемого гидродвигателя разли­чают поступательный, поворотный и вращательный гидроприводы, а также гидропривод смешанного движения, в который входят не менее двух типов объемных гидродвигателей.

Гидропривод с автоматическим регулированием, в котором параметр движения выходного звена объемного гидродвигателя поддерживается постоянным, называют стабилизированным гидро­приводом, а гидропривод с автоматическим регулированием, в ко­тором параметр движения выходного звена гидродвигателя изме­няется по заданной программе, называют программным гидропри­водом.

Объемная гидромашина, предназначенная для работы, как в режиме объемного насоса, так и в режиме объемного гидродви­гателя, называется обратимой объемной гидромашиной.

По характеру движения выходного звена различают объемные гидродвигатели возвратного и вращательного движения. Первые из них называются силовыми цилиндрами или гидроцилиндрами, а вторые — гидромоторами. Под последним понимается объемный гидродвигатель с вращательным движением выходного звена.

Различают нерегулируемый и регулируемые гидромоторы, под которыми понимаются соответственно гидромоторы с постоянным и с переменным рабочим объемом. Кроме того, раз­личают нереверсивный и реверсивный гидромоторы, под которыми понимается соответственно гидромотор с постоянным и с перемен­ным направлением вращения выходного звена.

Гидропривод, управление которым осуществляется ручным воздействием на регулирующий орган без подвода дополнительной энергии извне, называют гидроприводом ручного управления. При использовании же воздействия на регулирующий орган гидро­машины сервомеханизма, а также в случае дистанционного упра­вления, будет иметь место гидропривод автоматического управ­ления.

Гидролиния (гидросеть) — устройство, предназначенное для прохождения рабочей среды в процессе работы объемного гидропривода. Различают всасывающую и напорную гидро­линии: по первой рабочая жидкость движется к насосу, а по второй жидкость движется от насоса к распределителю или непо­средственно к гидродвигателю. Гидролинию, по которой жидкость движется от распределителя к объемному гидродвигателю, назы­вают исполнительной гидролинией; гидроли­нию, по которой жидкость движется в бак от гидроаппарата или непосредственно от объемного гидродвигателя, называют сливной гидролинией.

Под аппаратами управления понимают устройства, предназна­ченные для управления параметрами гидросистемы (гидропри­вода). Насос и гидродвигатель связаны между собой и с аппа­ратами управления гидролинией.

Объемная подача насоса — отношение объема подаваемой жидкости ко времени.

Рабочий объем насоса — разность наибольшего и наименьшего значений замкнутого объема за один оборот.

Геометрическая (идеальная) подача — сумма подач и объем­ных потерь насоса.

Давление на входе в насос и на выходе из насоса — соответ­ственно давление рабочей жидкости на входе и на выходе из насоса.

Подпор — разность высот уровня рабочей жидкости в опорож­няемой емкости (баке, резервуаре) и центра тяжести сечения входа в насос.

Высота самовсасывания — высота самозаполнения подводя­щего трубопровода самовсасывающим насосом.

Мощность насоса — мощность, потребляемая насосом.

К. п. д. насоса — отношение полезной мощности насоса к его приводной мощности.

Номинальный режим насоса — режим его работы, обеспечи­вающий заданные технические показатели.

Оптимальный режим насоса — режим работы насоса при наи­большем значении к. п. д.

Кавитационный режим насоса — режим работы насоса в усло­виях кавитации, вызывающей изменение основных технических показателей.

Помимо объемного гидропривода различают также гидродина­мический привод (передачу), состоящий из гидродинамической передачи и устройства управления, а также вспомогательных аппаратов и гидролиний. Гидродинамическая передача соответ­ственно состоит из лопастных (центробежных) насоса и гидродвигателя (турбины). Энергия от насоса к турбине передается гидродинамическим взаимодействием потока жидкости и рабочих колес
машин. Следовательно, в этих передачах в основном используется кинетическая энергия жидкости (скоростной напор), тогда как в объемных гидропередачах в основном используется энергия давления.

Гидропередачей также часто называют устройства, предназна­ченные для передачи механической энергии посредством жидкости независимо от типа передач (объемного или гидродинамического), причем понятия «насос» и «гидродвигатель» объединяют в общем названии «гидромашина», понимая под этим преобразователь энергии — механической в гидравлическую и гидравлической в механическую.

Дата добавления: 2015-12-29 ; просмотров: 1662 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Машины предназначенные для создания потока перемещения жидкости называют

Ваш обозреватель не поддерживает встроенные рамки или он не настроен на их отображение.

6.3.1. Общие сведения о машинах для подачи жидкостей и газов

Основные определения и классификация устройств для подачи жидкостей и газов

Насос — устройство (гидравлическая машина или аппарат) для напорного перемещения (всасывания и нагнетания) главным образом капельной жидкости в результате сообщения ей механической энергии (потенциальной и кинетической). ГОСТ 17398–72 определяет насос как машину для создания потока жидкой среды. Устройства для безнапорного перемещения жидкости насосами обычно не называют и относят к водоподъемным машинам.

Компрессорная машина — это машина, предназначенная для подачи газовых сред путем сообщения им механической энергии. В зависимости от степени сжатия t (т. е. отношения давления на выходе к давлению на входе) лопастных компрессорных машин различают вентиляторы ( t 1,15), газодувки (1,15 £ t £ 3) и компрессоры ( t  3). Вследствие малого изменения давления вентиляторами термодинамического изменения газа почти не происходит. Это дает основание рассматривать теорию лопастных насосов и вентиляторов рассматривать слитно, как теорию машин для подачи несжимаемой среды.

Гидравлические машины для подачи жидкостей и газов в целом часто называют также нагнетателями.

Названия большинства устройств, применяемых для всасывания и нагнетания жидкостей, состоят из слова «насос» и соответствующего определения, характеризующего, как правило, либо принцип его действия (например, центробежный, электромагнитный), либо особенности конструкции (горизонтальный, зубчатый, шиберный), либо подаваемую среду (например, конденсатный, грунтовой). Иногда определительное слово фиксирует назначение или область применения насоса (например, лабораторный, дозировочный), тип привода (с паровым приводом, с электроприводом), а также автора конструкции (например, насос Гемфри) или название фирмы (насос СИХИ — по первым буквам слов Simen Hinsch; насос Фарко — по имени владельца завода). Некоторые из рассматриваемых устройств получили особые названия, например: газлифт, одна из конструкций которого называется маммут-насос, или насос Маммута; вытеснители, к которым относится монжус, называемый также насосом Монтежю, или пневматический насос; гидроэлеватор, инжектор и эжектор, являющиеся разновидностями струйного насоса (см.п. 6.3.2).

Устройства для напорного перемещения жидкостей разделяют на виды и разновидности по различным признакам, например по принципу действия и конструкции. Насосы можно также условно разделить на насосы-машины, приводимые в действие от двигателей, и насосы-аппараты, которые действуют за счет иных источников энергии и не имеют движущихся рабочих органов. ГОСТ 17389–72 подразделяет насосы на два основных класса: динамические и объемные.

Читайте также:  Топливные фильтры для уаз двигатель 409

Компрессорные машины также подразделяют на динамические и объемные (см. также 6.3.3).

В динамических машинах передача энергии потоку происходит под влиянием сил, действующих на жидкость (газ) в рабочих полостях, постоянно соединенных с входом и выходом насоса (компрессорной машины). Доля кинетической энергии в общем приращении энергии достаточно велика вследствие больших скоростей жидкости (газа) на выходе из машины.

Работа объемных машин выполняется путем всасывания и вытеснения жидких или газовых сред за счет циклического изменения объема в рабочих полостях (цилиндрах, корпусах специальных форм) при движении рабочих органов (поршней, диафрагм, пластин, зубцов и т. д.). Простейший пример — поршневой насос одностороннего действия. Периодичность движения поршня обусловливает неравномерность подачи и возникновения инерционных сил. Поэтому привод таких машин имеет низкую частоту вращения. Эти обстоятельства вызвали появление объемных насосов вращательного типа, называемых роторными: шестеренных, пластинчатых и винтовых.

Классификация насосов по энергетическому и конструктивным признакам представлена на рис. 6.3.1.1, аналогичная классификация компрессорных машин — на рис. 6.3.1.2.

Динамические машины представлены в современной промышленности четырьмя основными конструктивными группами: центробежными, диагональными и осевыми насосами (рис. 6.3.1.3), вентиляторами и компрессорами и вихревыми насосами. Машины первых двух групп являются лопастными, третья группа относится к машинам трения.

Лопастные насосы также подразделяются по конструкции отвода — устройства для частичного преобразования кинетической энергии жидкости в потенциальную энергию давления (со спиральным, кольцевым или лопаточным отводом), по числу потоков внутри рабочего колеса (рис. 6.3.1.4), по числу ступеней рабочих колес в насосе — одноступенчатый, многоступенчатый (одностороннее или симметричное расположение колес на одном валу с последовательным прохождением потока) и по числу потоков — однопоточные и многопоточные (с параллельным прохождением потока через колеса, расположенные на одном валу). По расположению оси вращения вала насосы подразделяются на вертикальные, горизонтальные, с наклонной осью.

В осевых и диагональных насосах лопасти на рабочем колесе могут быть жестко закрепленными во втулке или с поворотными (регулируемыми), с электрическим, гидравлическим или электрогидравлическим приводом их разворота.

По способу герметизации насосы можно разделить на две группы: с уплотнением вала (обычно сальниковым или торцевым, для крупных насосов — щелевым) и герметичные (с экранированным электродвигателем, ротор и статор которого разделены тонкой цилиндрической гильзой из магнитопроницаемой стали).

Рис. 6.3.1.1. Основная классификация насосов

Рис. 6.3.1.2. Основная классификация компрессорных машин

Рис. 6.3.1.3. Классификация лопастных насосов
по направлению потока жидкости на выходе из рабочего колеса:
а) центробежный; б) диагональный; в) осевой

Рис. 6.3.1.4. Классификация центробежных насосов по потокам внутри рабочего колеса:
а) одностороннего входа;
б) двустороннего входа

Классификация насосов по назначению не может быть строгой, т. к. одни и те же насосы применяются в энергетике, водоснабжении, в химическом производстве и т. д. Например, в теплоэнергетике все центробежные насосы разделяют на следующие группы: 1) насосы для чистой воды; 2) конденсатные (для удаления конденсата с температурой до 393 К); 3) питательные (для подачи горячей воды в паровые котлы); 4) насосы для кислых сред (из нержавеющих сталей); 5) насосы для подачи смесей жидкостей и твердых частиц, в том числе песковые, шламовые (грязевые), земляные (землесосы) (для снижения износа проточная часть насосов выполнена из конструкционных или твердых белых чугунов).

Особо следует отметить химические насосы (тип Х). Конструктивно они выполнены практически одинаково и различаются в основном материалом деталей проточной части в зависимости от качества перекачиваемой среды и условий эксплуатации. Химические насосы выпускаются различных типоразмеров (Х, АХ, ХБ, ХВС, ХГ, ХМ, АХП, ХО, ХП, ТХ, ТХИ) в горизонтальном и вертикальном исполнении.

Основные параметры гидравлических машин для подачи жидкостей и газов

Основными параметрами гидравлических машин для подачи жидкостей и газов (нагнетателей) являются подача, напор (или развиваемое давление), потребляемая мощность и КПД.

Подача (производительность) — количество (объем или масса) жидкости (газа), подаваемое машиной в сеть в единицу времени. Соответственно различают производительность объемную Q, м 3 /с, и массовую G, кг/с.

В расчетах принято приводить объемную подачу компрессоров к условиям всасывания (для вакуум-насосов — к условиям на линии нагнетания) или к нормальным условиям, т. е. к давлению 100 кПа и температуре 293 К.

Напор насоса (м) — это удельная механическая энергия, сообщаемая насосом жидкости в единицу времени:

, (6.3.1.1)

где Е — полная механическая энергия, сообщаемая жидкости за время t, Дж; m — масса жидкости, протекающей через насос за время t, кг; g — ускорение свободного падения, м/с 2 .

Согласно ГОСТ 17398–72, давление, развиваемое насосом (Па), определено зависимостью

, (6.3.1.2)

где рв, рн — соответственно давления на входе в насос (во всасывающем патрубке) и на выходе из него (в нагнетательном патрубке), Па; r — плотность жидкости, кг/м 3 ; zв, zн — высоты расположения центров входного и выходного сечений насоса, м; vв, vн — средние скорости потока на входе и выходе, м/с.

Связь между давлением, развиваемым насосом, и напором, представляется соотношением:

, (6.3.1.3)

откуда следует выражение для напора, развиваемого насосом:

. (6.3.1.4)

Выражение (6.3.1.4) имеет четкий энергетический смысл: первое слагаемое характеризует приращение удельной потенциальной энергии давления, приобретаемой жидкостью в насосе, второе — приращение удельной потенциальной энергии положения, третье — приращение ее удельной кинетической энергии. Сумма первых двух слагаемых характеризует развиваемое насосом увеличение статического напора, третье слагаемое — увеличение скоростного напора.

Из выражения (6.3.1.4) вытекает, что напор измеряется в метрах столба перекачиваемой жидкости. Не следует воспринимать напор насоса как геометрическую высоту столба жидкости, на которую насос может поднять жидкость. Соотношение (6.3.1.4), помимо изменения потенциальной энергии, обусловленной подъемом жидкости на высоту (zнzв), содержит еще и приращение потенциальной энергии давления , а также приращение кинетической энергии .

Полезная мощность (мощность, сообщаемая насосом жидкости либо вентилятором газу) при известных производительности и напоре определяется из выражения

Читайте также:  Не прохожу тест драйвы

и может интерпретироваться как работа, затраченная на подъем на высоту Н жидкости весом r gQ D t, отнесенная к промежутку времени D t.

Эффективная (затрачиваемая) мощность Nэф — это мощность, потребляемая насосом (вентилятором) при перекачивании жидкости (газа) от механического привода, т. е. она может быть измерена на приводном валу насоса. Схема преобразования мощности Nэл, потребляемой электроприводом, сначала в эффективную мощность Nэф, а затем в полезную Nп представлена на рис. 6.3.1.5.

Рис. 6.3.1.5. Схема трансформации мощности при работе нагнетателя от электропривода

Коэффициент полезного действия (КПД) насоса (вентилятора)

(6.3.1.6)

может быть представлен в виде

где h ггидравлический КПД, учитывает потери энергии, обусловленные гидравлическими сопротивлениями внутри насоса (в клапанах и патрубках поршневых насосов, в проточных каналах лопастных насосов и т. п.), т. е. связан со снижением H; h об — объемный КПД, учитывает потери энергии, вызванные внутренними и внешними утечками жидкости (между всасывающим и нагнетательным патрубками, через уплотнения вала), т. е. обусловлен снижением Q; h мех — механический КПД, учитывает прочие потери энергии в насосе (на трение в подшипниках, уплотнениях, трение поршня о цилиндр в поршневом насосе, диссипацию энергии в жидкости между диском колеса центробежного насоса и его корпусом и т. п.).

Всасывающая способность обусловлена явлением кавитации и характеризуется максимально допустимой высотой установки насоса (см. 2.2.12) над уровнем жидкости в емкости, из которой она всасывается (при данном давлении в емкости и температуре жидкости).

Подача и напор объемных и динамических машин. Области применения насосов и компрессоров

Подача и напор нагнетателей определяются, с одной стороны, их конструкцией и скоростями движения рабочих органов, с другой — характеристикой сети, к которой подключен нагнетатель (рис. 6.3.1.9).

Поршневые и роторные машины конструктивно приспособлены для создания высоких напоров при относительно небольших подачах. Лопастные машины перекрывают область значительных подач при широком диапазоне развиваемых напоров, причем для центробежных машин характерны большие напоры, для диагональных — умеренные, для осевых — малые напоры и наибольшие подачи. Вихревые машины занимают промежуточную область между центробежными и поршневыми.

Представление о подачах и напорах насосов общепромышленного назначения разных типов, где в качестве перекачиваемой жидкости принята вода, можно получить по рис. 6.3.1.6. Отдельные уникальные конструкции насосов могут иметь параметры, выходящие за пределы этого графика. Однако в целом нетрудно проследить выполнение закона сохранения энергии: при перекачивании одной и той же жидкости при постоянной полезной мощности согласно формуле (6.3.1.5) с ростом производительности напор уменьшается, и наоборот. Области применения компрессоров различных типов показаны на рис. 6.3.1.7.

Рис.6.3.1.6. Примерные графики подач и напоров насосов различных типов для перекачивания воды:
I — поршневые; II — центробежные; III — осевые

Рис. 6.3.1.7. Области применения различных типов компрессоров по производительности и давлению:
I — поршневые; II — центробежные;
III — винтовые; IV — ротационные

Наибольшее распространение в промышленности получили центробежные нагнетатели. Центробежные насосы могут создавать напор до 3500 м и подачу — 100 000 м 3 /ч в одном агрегате; подача центробежных вентиляторов достигает 1 000 000 м 3 /ч в одном агрегате.

Центробежные насосы используются в теплоэнергетических установках для питания котлов, подачи конденсата и сетевой воды, а также для подачи умеренно вязких жидкостей в химической и нефтехимической промышленности. В конденсационных установках мощных паровых турбин применяют осевые насосы. Струйные насосы используют для удаления воздуха из конденсаторов паровых турбин, а также в качестве эжекторов и инжекторов.

Вихревые насосы применяют для подачи кислот, щелочей и других химически агрессивных сред, где при малых подачах необходимы высокие напоры, а также для перекачивания сжиженного газа. Разработаны конструкции дисковых насосов, обладающих высокими антикавитационными качествами.

Поршневые насосы применяются для питания паровых котлоагрегатов малой паропроизводительности и в качестве дозаторов реагентов. Роторные нагнетатели чаще всего применяются в системах смазки (шестеренные насосы).

Осевые вентиляторы используются в установках местного проветривания, в градирнях и т. п. Прямоточные центробежные (радиальные) вентиляторы используют в установках с ограниченными размерами. Смерчевые вентиляторы целесообразно применять для перемещения среды, которую нельзя подвергать механическому повреждению, а также для пневматического транспортирования материалов, вызывающих большой износ лопаток и дисков рабочих колес. Дисковые вентиляторы благодаря их малошумности устанавливают в местных кондиционерах для вентиляции помещений. Диаметральные вентиляторы широко используют в системах вентиляции и кондиционирования воздуха, в электротермическом оборудовании, в бытовых установках.

Центробежные компрессоры являются основным видом компрессорных машин в химическом и металлургическом производствах. Поршневые компрессоры служат для снабжения сжатым воздухом пневмоинструмента, а на тепловых электростанциях — для сдува золы и сажи с поверхностей котельных агрегатов. Роторные компрессорные машины особенно часто используются в качестве газодувок и вакуум-насосов.

Работа насоса, подключенного к сети

Для определения фактических напора и производительности, при которых работает насос, нужно знать параметры сети, к которой он подключен (рис. 6.3.1.8).

Рис. 6.3.1.8. Насос, включенный в сеть:
1 — сеть; 2 — насос

Понятие характеристики сети введено в 2.2.12 — см. уравнение (2.2.12.49). В случае турбулентного режима течения жидкости в трубах характеристика сети близка к квадратичной и имеет вид (2.2.12.50), где Н — статический напор, т. е. в координатах HQ характеристика сети имеет вид параболы (рис. 6.3.1.9).

Рис. 6.3.1.9. График совместной работы насоса и сети:
1 — характеристика сети; 2 — характеристика насоса

Уравнение (2.2.12.50) с учетом соотношений (2.2.12.51) и (2.2.12.52) позволяет при заданных параметрах сети найти напор насоса Н для обеспечения заданного расхода Q, а значит — подобрать насос.

Точка пересечения характеристики сети и характеристики насоса (т.очка А на рис. 6.3.1.9) является рабочей точкой, соответствующие ей подача QA и напор HA — это самопроизвольно устанавливающиеся параметры системы насос—сеть. Очевидно, что при выборе насоса в точке пересечения характеристик должны выполняться условия QA > Qр и HA > Hр, где Qр и Hр — требуемые рабочие параметры сети. Способы регулирования производительности насосов описаны ниже (см.: Регулирование подачи центробежных нагнетателей).

Adblock
detector