Подвесные лодочные моторы
ГЛАВА 5. ДЕТАЛИ И УЗЛЫ ПОДВЕСНОГО МОТОРА
Дейдвудная труба. Дейдвудной трубой, или «дейдвудом», в подвесном моторе называется средняя часть мотора, связывающая его двигатель с подводной частью мотора в одно целое. В то же время она служит и кожухом для промежуточной передачи. Дейдвуд передает судну тяговое усилие гребного винта. Поворотом дейдвуда в подвесном моторе осуществляются задний ход и повороты судна.
Дейдвудная труба или отливается из легкого сплава, как, например, у подвесных моторов А-8, ИМА (см. рис. 4), или сваривается из стальных труб и штампованных фланцев. Сварная конструкция применяется у моторов ЛМР-6 и ЛММ-6. На рис. 24 показана сварная конструкция дейдвудной трубы, примененная на подвесном моторе ЛМР-6. Из рисунка видно, что к цельнотянутой трубе 4 сверху приварен фланец 1 для крепления картера двигателя, а снизу — сапожок обтекаемой формы с фланцем 8 для крепления к коробке шестерен.
В моторах последнего выпуска через дейдвудную трубу отводят газы и охлаждающую воду за борт судна, что способствует глушению выпуска. Для предотвращения попадания воды в подводную часть мотора вваривается сквозная трубка-кожух 7 вертикального валика, а для подачи холодной забортной воды к двигателю внутри дейдвудной трубы устанавливают другую трубку 6, приваривая ее одним концом к фланцу выхлопного патрубка 3, с которым крепится выпускной коллектор, а другим соединяя с нижним фланцем 8 дейдвуда. Для направления горячих газов и защиты от их прямого действия на кожухе вертикального вала предусматривается отражатель горячих газов 2. Опорное кольцо 5 на дейдвуде служит опорным подшипником, воспринимающим полный вес мотора со всеми его агрегатами и бензобаком, заполненным топливом и смазкой, а замок заднего хода 9 связывает мотор с башмаком кронштейна при заднем ходе судна.
Кронштейн подвески мотора. Кронштейн подвески мотора выполняет роль станины для всей силовой установки. Обычно он отливается из алюминиевого сплава и имеет такую конфигурацию и такие формы сечения своих частей, которые обеспечивают ему удобство и надежность крепления и большую прочность при небольшом весе. Это достигается применением тавровых, двутавровых, угловых и полых сечений его частей.
Рис. 24. Дейдвудная труба мотора ЛМР-6:
1 — верхний фланец; 2 — отражатель горячих газов; 3 — патрубок выхлопа; 4 — труба; 5 — опорное кольцо; 6 — водоподводящая трубка; 7 — кожух вертикального вала; 8 — нижний фланец; 9 — замок заднего хода; 10 — штуцер
На рис. 25 дан кронштейн моторов ЛММ-6 и ЛМР-6. В верхней его части имеются два зажимных винта 3 для крепления его на транце. Хомут 1 обхватывает дейдвуд и держит мотор, позволяет ему свободно поворачиваться вокруг своей оси. В свою очередь, хомут вращается на своей оси 2, соединяющей его с кронштейном. Для смягчения ударов и тряски мотора на ось хомута кронштейна надеваются резиновые втулки-амортизаторы 5. В хомуте имеются две горизонтальные прорези и одна вертикальная, дающие возможность стягивать с помощью стяжного винта 4 среднюю часть хомута и тем регулировать зазор между хомутом и дейдвудной трубой.
В нижней части кронштейна установлены две щеки кронштейна, между которыми крепится башмак кронштейна 7 с резиновой подушкой 8 под дейдвудную трубу. В шеках просверлены три пары отверстий для регулировки угла установки мотора по вертикали.
В низу кронштейна имеются две вильчатые лапки под заранее устанавливаемые на корме специальные болты (глухари) 9, удерживающие кронштейн на месте при боковом действии тягового усилия и тянущие судно при заднем ходе.
Рис. 25. Кронштейн к мотору ЛМР-6:
1 — хомут; 2 — ось кронштейна; 3 — зажимной винт; 4 — стяжной винт; 5 — амортизаторы; 6 — щеки кронштейна; 7 — башмак; 8 — резиновая подушка; 9 — специальный болт (глухарь); а — лапы кронштейна
Подводная часть. Подводная часть мотора обычно делается составной из двух отдельных корпусов: верхнего 1 и нижнего 6 (рис. 26). Это вызывается удобствами монтажа в ней силовой передачи. Обе части плотно скрепляются между собой шпильками.
Оба корпуса обтекаемой формы.
На рис. 26 изображена подводная часть подвесного мотора ЛМР-6. В верхнем корпусе монтируется на двух шариковых подшипниках вал 2 ведущей шестерни. Хвостовик вала при помощи шлиц на его верхнем конце соединяется с вертикальным валом дейдвудной трубы, передающим крутящий момент коленчатого вала.
Верхний корпус при сочленении его с дейдвудной трубой закрывается ее нижним фланцем, создавая полную герметичность от попадания воды в полость в. Внутри корпуса проходит изогнутая перегородка с залитой в нее трубкой б под подачу охлаждающей воды из заборника д в зарубашечное пространство цилиндра. Сзади перегородки проходит выхлопной канал а для вывода отработанных газов под воду с целью глушения шума от выхлопа.
Рис. 26. Подводная часть мотора ЛМР-6:
1 — верхний корпус; 2 — вал ведущей шестерни; 3 — уплотнительное кольцо; 4 — ведущая шестерня; 5 — горизонтальный вал; 6 — нижний корпус; 7 — ведомая шестерня; 8 — опорно-упорный шариковый подшипник; 9 — корпус подшипника; 10 — уплотнительный манжет; 11 — соединительная муфта; 12 — штифт; 13 — гребной винт; 14 — гайка; 15 — уплотнительное кольцо; 16 — крышка; 17 — винт крышки; а — выхлопной канал; б — трубка подачи воды; в — камера вертикального вала; г — костыль (шпора); д — заборник воды
Спереди и сзади в корпусе выфрезерованы два кармана под гайки. Карманы закрываются обтекаемыми крышками 16, последние закрепляются винтами 17.
В нижнем корпусе монтируется на двух шарикоподшипниках горизонтальный вал 5 с насаженным на него гребным винтом. Сам вал приводится во вращение ведомой шестерней 7 от малой ведущей конической шестерни 4. Ведомая шестерня закрепляется на валу при помощи шпонки.
Задний подшипник 8 воспринимает полное толкающее усилие (тягу) гребного винта и передает его через подводную часть дейдвудной трубе и далее через подушку щекам дейдвуда и кронштейну.
Нижний корпус подводной части уплотняется от попадания воды со стороны гребного винта уплотненным манжетом 10. Сбоку корпус имеет отверстие с заглушкой для заливки масла под смазку шестерен и подшипников подводной части. Снаружи, немного выше заборника воды, по бокам верхней подводной части расположены два антикавитационных пера, назначение которых выравнивать поток воды около гребного винта, препятствовать подсосу воздуха к лопастям, мешать образованию вихрей в подводной части, наконец, предотвращать возникновение пустот по граням лопастей, сопровождающееся ударами воды о лопасть.
Рис. 27. Гребной винт: а — двухлопастной; б — трехлопастной; в — профиль винта
Снизу корпус заканчивается костылем, или шпорой, г, предохраняющим винт и мотор от поломки при наскоке на препятствие (см. рис. 5).
Подводная часть имеет в длину сильно растянутую форму, отвечающую требованию обтекаемости и частично играющую роль руля при повороте.
Материалом для отливки корпусов подводной части служит коррозиоустойчивый сплав алюминия, реже — бронза.
Гребные винты. Гребной винт служит для преобразования крутящего момента коленчатого вала двигателя в толкающее усилие, т. е. тягу гребного винта.
Гребной винт представляет собой втулку, на которой по окружности ее размещены лопасти. В задачу лопастей входит отбрасывать воду назад и создавать тем самым толкающее усилие винта.
Гребные винты подвесных моторов изготовляются двух-, трех- и четырехлопастные. Они бывают правого вращения, т. е. когда крутятся при ходе судна вперед по направлению часовой стрелки, если смотреть на судно со стороны винта, и левого вращения, т. е. когда крутятся против часовой стрелки.
По размерам винты бывают самые разнообразные как по диаметру, так и по ширине лопасти, а также и по шагу (рис. 27), — все зависит в основном от требуемой скорости судна и мощности двигателя.
Диаметром гребного винта называется диаметр окружности, образованной конечными точками его лопастей при вращении.
Шагом винта называется расстояние, на которое подвинулся бы гребной винт при одном своем повороте, ввинчиваясь в окружающую среду без проскальзывания, подобно винту в гайке.
Преобразование вращательного движения гребного винта в поступательное сопровождается значительными потерями, зависящими от:
1) размеров и формы гребного винта (формы его лопастей, шага, чистоты отделки и других факторов),
2) скорости набегающего потока, несколько отличного от скорости судна вследствие влияния корпуса судна на поток воды за кормой,
3) мощности двигателя,
4) числа оборотов гребного винта.
Все перечисленное в совокупности определяет величину коэффициента полезного действия винта.
КПД винта характеризует процент эффективной мощности двигателя, преобразованной в тягу гребного винта. Он обычно даже у лучших винтов не превосходит 70% и нередко выражается числом 50—55%.
Надо иметь в виду, что винт будет хорошо работать и показывать высокий КПД только при том условии, если он правильно рассчитан или правильно подобран, с учетом упомянутых ранее факторов. Один и тот же винт, поставленный на другой тип судна, на который он не был рассчитан, может оказаться совершенно непригодным. Поэтому всякие замены и перестановки винтов надо производить с большой осторожностью, придерживаясь данных, рекомендованных заводом-изготовителем. Чем больше диаметр и шаг винта, тем больше требуется мощность для вращения его с тем же числом оборотов. Большие диаметры сильно удлиняют подводную часть двигателя. Поэтому их редко делают свыше 320 мм. Так, у мотора ЛММ-6 диаметр гребного винта при мощности двигателя в 6 л. с. равен 280 мм при четырех лопастях на втулке и при 1220 об/мин (см. табл. 3).
Для легкости винты подвесных моторов обычно отливаются из коррозиоустойчивого алюминиевого сплава. Поверхности лопастей гребных винтов, чтобы снизить потери на трение их о воду, полируют. Крепление винта с горизонтальным валом, на котором он сидит, производится чаще всего штифтом или соединительной муфтой. Штифт изготовляется из латуни и при ударе лопастью о препятствие легко срезается. Постановка нового запасного штифта требует остановки мотора и времени, что является большой помехой как в пути, так, в особенности, во время соревнований. Кроме того, при срезе шпильки мотор теряет нагрузку, получаемую от гребного винта, резко повышает обороты, «идет вразнос». Чрезмерно большие обороты могут привести к поломке двигателя.
Во избежание поломок лопастей винта при наскоке на препятствие замена срезанной шпильки допустима лишь шпилькой, изготовленной из латуни, и ни в коем случае не стальной.
В новейших конструкциях появилось сочленение гребного винта, работающего по принципу трения («муфты трения»). Такие винты при случайном ударе лопастью о подводное препятствие проскальзывают по валу и не ломаются.
Так как расчет гребного винта сложен и под силу только конструкторскому бюро завода или специалисту по винтам, то практически вне заводских условий подходящий винт для того или иного типа и размера лодки выбирают в результате испытаний нескольких различных винтов и последующих замеров скорости хода судна. Правильно подобранный винт дает максимально возможную скорость.
Устройство лодочного мотора
Рассмотрим устройство подвесного лодочного мотора на примере четырехтактного Honda BF5, изображение которого мы взяли с официального сайта «Honda». Мотор на картинке предстает перед нами в полураздетом состоянии и на ней наглядно можно разглядеть основные узлы ПЛМ.
Сразу скажем, что это одноцилиндровый, 4-х тактный мотор. На 2-х тактном основные узлы ничем не различаются, в нем только нет клапанной системы газораспределения (нет распредвала, клапанов, масляного картера). У двухтактников вместо этого есть специальные отверстия в стенках цилиндров, через которые в них поступает топливная смесь и выходят отработанные газы.
Что примечательно, то в этом, казалось бы маломощном, 5-ти лошадном лодочном моторе, уже есть термостат и это одноцилиндровый двигатель, на секундочку. Привод у Хонды немного другой, по сравнению с большинством аналогичных моторов. Вертикальный вал составной, части его соединяются прямо под редуктором. Так что устанавливать сапог после ремонта системы охлаждения будет не сложно.
Кроме того у Honda BF5 нет встроенного бензобака, да и вообще Хонда их не ставит на свои моторы. Ручной стартер здесь тоже не стандартного типа, как мы привыкли, с верхним расположением на маховике. Но зато у Хонды он надежнее, т.к. ваши мышечные усилия передаются на маховик не лепестковой, а зубчатой передачей с передаточным отношением. Такое конструкторское решение японских инженеров уменьшило усилие при заводке мотора, так что лодочные моторы Хонда заводить может и женщина и ребенок. Но это не уникальное решение, Evinrude и Johnson давно уже его практикуют.
Рычаг КПП здесь расположился сбоку, хотя последние мировые тренды (и мировые бренды) говорят о том, что в передней части мотора будет удобнее.
Карбюратора здесь не видно, но поверьте он есть.
У большинства маломощных лодочным моторов топливный насос крепится на паре болтов. Шток топливного насоса, через отверстия в блоке цилиндров, взаимодействует с кулачками распредвала. Аналогичные кулачки предназначены для толкателей клапанов. Все эти кулачки на распредвале расположены так, чтобы кулачки и топливный насос работал в строго определенном режиме. Распредвал напрямую связан с коленвалом лодочного мотора через зубчатую передачу. Но всё это относится исключительно к 4-х тактным моторам.
Чем Хонда 5 ничем не отличается от других ПЛМ так это системой охлаждения с крыльчаткой, редуктором и самим механизмом переключения передач. А вот выхлоп тут не через ступицу, а над гребным винтом, точно также как и у четырехтактной Ямахи 5. Многие спорят о плюсах и минусах такого решения, но на наш взгляд — все равно, и та и та система выполняет свои функции. Противники выхлопа над винтом говорят, что он громче, но как это можно замерить на фоне шума самого двигателя. Почему японцы пошли на такой шаг не известно, но явно тут не при чем влияние выхлопа на гидродинамику винта, мотор то всего 5 л.с., не те тут скорости. Да и у всех более мощных лодочных моторов выхлоп идет через ступицу винта.
Надеемся, что после такого разбора устройства типичного лодочного мотора, вопросов у вас осталось меньше. Если остались — пишите, постараемся ответить.
Особенности устройства лодочного мотора
Конструкции лодочных моторов, как стационарные, так и подвесные, сегодня крайне востребованы во всем мире. Этот агрегат в свое время произвел революцию, и до сих пор является очень востребованным в лодочной среде. Конечно, ведь лодочный мотор – это основа всей лодки, без которой судно не сможет быстро и мощно рассекать водное пространство.
Лодочный мотор Suzuki DF15
Сегодня существует огромное множество лодочных агрегатов, которые отличаются своими функциями, конфигурациями, техническими моментами, дизайном, цветами и многим другим. Наиболее популярными являются такие лодочные агрегаты, как двухтактные и четырехтактные моторы на лодки. Эти современные агрегаты отличаются совершенными характеристиками надежности, безопасности и долговечности. Также можно долго говорить о том, насколько они являются практичными.
Особенности современных лодочных моторов
Общие характеристики современных агрегатов на лодки являются весьма внушительными. Сегодня мототехника сделала огромный шаг вперед, и тем самым сделала устройство лодочного мотора очень технологичным и совершенным:
- сегодня подвесными лодочными моторами оснащают очень многие плавательные средства, такие как гидроциклы, яхты, катера и лодки, а также надувные лодки ПВХ. Можно сказать, что эти моторы являются универсальными. Порой даже, имея сразу и гидроцикл и лодку, лодочник имеет лишь 1 мотор на 2 средства передвижения;
- лодочные моторы обладают крайне надежными, практичными и долговечными характеристиками. Особенно выделяются двухтактные и четырехтактные лодочные моторы, которые завоевали популярность во всем мире. Это крайне надежные агрегаты, которые являются очень мощными. Максимальная мощность таких лодочных моторов составляет 300 лошадиных сил. Большинство подобных лодочных моторов обладают очень хорошей экономичностью, учитывая их мощность. Порой экономичность доходит до 45 процентов;
- на современном рынке мототехники более всего востребованы лодочные моторы из Японии, Соединенных Штатов Америки и Китая. Эти моторы представляют собой образцы высокого качества и долговечности. Со времен появления этой техники на рынке, можно сказать, что изменились все тенденции в мире лодочных моторов. Сразу же поменялось отношение этим агрегатам и принцип обслуживания. Теперь уходу за такими моторами уделяют особенное внимание и тщательно за ними следят. И моторы не остаются в долгу – после этого они способны прослужить много лет и даже десятков лет своему владельцу.
Устройство лодочного мотора для маломерных судов
Узнав немного больше про устройство двигателя на лодку, можно в целом понять, какими важными функциями обладает лодочный мотор. Именно поэтому многим лодочникам сегодня так интересно погружаться в изучение своих агрегатов на лодки:
- говоря про устройство лодочного мотора, который представлен сегодня на рынке мототехники, стоит сделать акцент на том, что он во многих случаях имеет двухцилиндровый двигатель, который оснащен карбюраторной системой. Если говорить о продувках двигателей, она, как правило, кривошипнокаменая дефлекторная. Сегодня в моторах присутствует водяное охлаждение, которое очень хорошо охлаждает всю систему от перегрева. Моторы с такой конструкцией отлично эксплуатируются, как в озерах, речках, так и в морях. То есть этот мотор терпит и морскую и пресную воду, не оставляя на деталях отложение солей. Глубина для такого двигателя должна быть больше 0, 8 метров;
- впуск топливной смеси в современный лодочный агрегат производится через специальное золотниковое устройство. Цилиндры такого устройства обычно изготовлены из специального серого чугуна в виде отдельных отливков. Бывают и большие единые блоки, которые изготавливаются из специального алюминиевого сплава с добавлением чугунных гильз. Все будет зависеть от модификации мотора. Обычно присутствуют каналы для воды, которая будет охлаждать все устройство. Также могут быть продувочные каналы, которые обеспечивают подачу топлива смешанного с моторным маслом из картера лодочного мотора;
- нужно отметить, что блок головок, которые производится также из алюминиевого материала, имеет специальные каналы, в которых будет производится охлаждение всей жидкости и сразу 2 входа для свечей. Этот блок будет присоединяться к цилиндрам двигателя посредством уплотненной армированной асбестовой прокладки;
- говоря про устройство лодочного мотора, нельзя не упомянуть про картер и коленчатый вал, которые всегда присутствуют в подвесном лодочном моторе. Литой алюминиевый картер обычно состоит из трех частей, образуя 2 кривошипные камеры. Их разделяет специальное кольцо двигателя, которое называют лабиринтным. Если говорить про разъемы камер, то их плоскости имеют уплотнение специальными прокладками, а также надежными резиновыми сальниками. Кроме того, есть специальные фланцы на картере двигателя, к которым и крепятся цилиндры агрегата. А также именно сюда присоединяются такие детали, как насос и карбюратор. Кроме того, примерно в середине картера обычно есть специальный канал посредством которого через карбюратор и кривошипные камеры проходить смесь бензина. Такая важная деталь лодочных моторов, как коленчатый вал изготавливается из двух неразъемных кривошипов. Каждый из этих кривошипов, как правило, имеет 2 специальные оси, или правильнее будет сказать – полуоси. Кривошипы же в свою очередь соединяются между собой посредством торцевых шлицов;
- следует поговорить о схеме такой важной части, как система подвески лодочного мотора. Система подвески лодочного мотора- это своеобразная основа. На нее монтируются практически все детали лодочного двигателя и специальные устройства для установки этого мотора на лодку. Система подвески выполняет множество функций в лодочном агрегате. К примеру, она хорошо воспринимает усилие, которое создает гребной винт лодочного мотора. Передает этот импульс на корпус агрегата и помогает использовать весь двигатель, как руль.
Кроме того, подвеска автоматическое откидывание всего двигателя при его наезде на то или иное препятствие. В эту систему обычно входит специальная плитка управления, оснащенная двумя рукоятками, вертлюг и 2 специальные основы этого средства.
Плита, о которой было упомянуто, имеет соединение с такой деталью, как вертлюг посредством специальной трубки. Она имеет вращение. В свою очередь к данному вертлюгу опоры крепятся при помощи шарниров. Также вертлюг имеет свое соединение с амортизатором всего мотора. Нужно отметить и тот факт, что общее положение подвесного лодочного мотора относительно всей плоскости транца очень хорошо может регулироваться.
Очень важно соответствие лодочного двигателя всем возможностям той или иной маломерной лодки. Наличие мощных стационарных моторов и подвесных лодочных двигателей, а также возможность установить на транец сразу несколько моторов, ставит перед лодочником некоторый вопрос. То есть в таком случае нужно хорошо понять мощность суммы данных агрегатов.
Здесь всегда будет какая-то максимально допустимая величина. Как правило, она всегда указывается в паспорте лодочного мотора. И всегда стоит придерживаться этой цифры, не превышая суммарную мощность, если вы выбираете несколько двигателей для своего судна.
Весьма затруднительным становится управление лодочным транспортом на волнах. Ведь любое несимметричное действие волны усиливает во много раз изменение угла атаки днищ. В таком случае лодка просто-напросто начинает выпрыгивать из воды. И управление таким судном весьма затрудняется. Из-за более сильных нагрузок динамики на корпус лодки при ударе о волны может произойти даже разрушение каких-то частей лодки.
Производители лодочных моторов ограничивают мощность лодочного мотора, который устанавливается на маломерное судно. Мощность, которая допускается для маломерных глиссирующих лодок, определяется по графику, который можно найти на пространствах интернета.