2016-11-30 Основной перечень конструктивных элементов и узлов автотранспортных средств
Автомашины имеют в своем составе 3-х ключевых блока:
Система двигателя
Компоновочный состав двигателя показан на рисунке. В него входят следующие компоненты:
Двигатели внутреннего сгорания (ДВС) важнейший конструктивный элемент, его задачей является трансформирование энергетического потенциала горючего в механическое усилие, направленное на выполнение полезных рабочих функций. Принципиальная схема автомотора основана на факторе смешения топливного вещества с атмосферными воздушными массами, в результате происходит образование воздушно-топливной смеси. Периодическое сгорание этой горючей смеси в камере сгорания формирует рост давления, направленного на поршневую группу, вращающую в свою очередь коленчатый вал посредством системы шатунов. Вращательная энергия переходит на трансмиссию машины.
Чтобы запустить мотор используется особый агрегат – стартер – аналог электромотора, который проворачивает коленвал. Для крупных дизельных автодвигателей вместо стартеров используют вспомогательный ДВС.
К настоящему времени разработаны несколько типов моторов, основанных на сгорании топлива
- Бензиновые
- двигатели на дизеле
- моторы на газе
- газодизельные
- роторно-поршневые
Кроме того, двигатели различают по типу горючего, по количеству и размещению цилиндров, по методике приготовления топливной смеси, по числу тактов в работе мотора и др.
Бензиновые и дизельные двигатели :
В бензиновом моторе, самом распространенном типе силовых агрегатов, горючим веществом является бензин. Минуя систему топливоподачи, это вещество по форсункам-распылителиям проникает в карбюратор или инжектор, а потом в виде топливно-воздушной смеси переходит к цилиндрам, где происходит ее сжимание посредством группы поршней, а затем ее воспламеняет искра от свечи зажигания.
Системы с карбюраторами уже устаревают, их вытесняет инжекторная система топливоподачи. Через форсунки-распылители (инжекторы) происходит впрыскивание горючего или сразу в цилиндры или через впускные коллекторы . Инжекторы могут быть на основе механической или электронной системы.
Механические системы дозируют топливо через плунжеры, представляющие собой рычажные механизмы, обладающие функцией электронного контроля за топливосмесью. В электронных устройствах весь цикл от приготовления до впрыскивания смеси проходит через блок управления. Инжекторные устройства позволяют экономичнее использовать топливо, обеспечивая оптимальное выгорание, и минимизировать выход вредных выхлопных газов.
В дизельмоторах в качестве топлива идет дизельное горючее. В таких моторах нет системы для зажигания, поскольку дизтопливо, смешанное с воздухом, проникая в цилиндр по форсункам, может взрываться от повышенного давления и высокой температуры, обеспеченные поршневой группой.
Газовые двигатели
Моторы на газовом топливе функционируют за счет газа – сжиженного, генераторного, сжатого или природного. Популярность таких моторов в современном мире стала расти за счет возросшими стандартами к безопасности автотранспорта в области экологии.
Первоначальное топливо находится в баллоне под высоким давлением потом по испарителю переходит к газовому редуктору, где его давление падает. Потом все идёт во схеме, аналогичной инжекторному мотору. В ряде случаев газовая система питания может обходиться без испарителя.
Шасси
В эту структурную часть автомобиля входят компоненты передачи усилий от мотора или коробки передач, ходовая часть и устройство для управления.
Передача усилия происходит, когда крутящий момент выдает двигательный импульс на ведущую ось машины. В состав силовой передачи входят:
- система сцепления
- коробка переключения скоростей
- кардан
- главная передача
- дифференциалы
- приводные валы
Сцепление
Сцепление выполняет функцию кратковременного отсоединения мотора от трансмиссии, чтобы впоследствии можно было плавно соединить их, когда передача переключена и в момент первоначального начала движения.
Коробка передач
Коробка переключения скоростей может корректировать показатель величины крутящего момента, передаваемого с коленвала мотора на карданный вал.
Коробка передач дает возможность надолго отключить соединения движка с карданной передачей, что делает возможным и езду задним ходом.
Карданная передача
Выполняет перенаправление крутящего момента трансмиссии на главную передачу с возможностью изменяющегося угла подачи.
Главная передача
Ее предназначение – обеспечение минимальных потерь при перенаправлении крутящего момента под прямым углом от кардана через дифференциалы к приводным валам ведущей оси и рост крутящего момента.
Дифференциал автомобиля
Оптимизирует вращение колес на ведущей оси, когда они движутся с разными частотами на повороте или на ухабистых дорогах.
Ходовая часть автомашин
В нее входят рама, передняя и задняя оси, соединённые с рамой через систему подвески . В подвеске использованы компоненты с упругими свойствами – рессоры, пружины цилиндрического типа, пневмобаллоны и амортизаторные стойки. Большинство машин оборудованы несущим кузовом без наличия рамы.
Механизм контроля автомобиля при движении
В узел управление машиной входит рулевой механизм, связанный с колесами передней оси через рулевой привод и тормозную систему. В машинах современного типа используется бортовая компьютерная техника, контролирующая в ряде случаев процессы управления с возможностью корректировать действия водителя.
Используя рулевое управление, можно поворачивать передние колеса, чтобы направить машину в нужное место.
Особенности конструкции тормозной системы обязаны строго обеспечить эффективное и своевременное уменьшение скорости движения машины и полную остановку, одновременно не препятствуя управлению, а также в ее задачу входит неподвижная фиксация машины.
Кузов.
Необходим для расположения пассажиров, размещения грузов и водителя. В современных типах машин кузова, как правило, выполняют несущую функцию и состоят из нескольких элементов-панелей, которые между собой закреплены на сварку. В кузове выделяют компоненты: двери, крылья, крышка багажного отсека. В первых машинах, которые представляли собой моторизированные открытые конные экипажи, которые не выдерживали стандартов и требований, предъявляемых к современным типам транспортных средств. В те годы автокузова производились на тех же заводах, что и кареты, пролетки, поэтому в новый вид продукции перешли многие термины и названия из старых производственных цехов.
По разнообразию кузовов современные легковые машины подразделяются на несколько типологических моделей, которые во многих странах имеют общие технические нормативы, в том числе и в России.
Устройство и конструкция автомобиля
Несмотря на огромное многообразие типов и моделей современных автомобилей, конструкция каждого из них состоит из набора агрегатов, узлов и механизмов, наличие которых позволяет называть транспортное средство «автомобилем». К основным конструктивным блокам относятся:
— двигатель;
— движитель;
— трансмиссия;
— системы управления автомобилем;
— несущая система;
— подвеска несущей системы;
— кузов (кабина).
Двигатель является источником механической энергии, необходимой для движения автомобиля. Механическая энергия получается за счет преобразования в двигателе другого вида энергии (энергии сгорающего топлива, электроэнергии, энергии предварительно сжатого воздуха и т. п.). Источник немеханической энергии, как правило, находится непосредственно на автомобиле и время от времени пополняется.
В зависимости от вида использованной энергии и процесса ее преобразования в механическую на автомобиле могут применяться:
— двигатели, использующие энергию сгорающего топлива (поршневой двигатель внутреннего сгорания, газовая турбина, паровой двигатель, роторно-поршневой двигатель Ванкеля, двигатель внешнего сгорания Стирлинга и т. п.);
— двигатели, использующие электроэнергию, — электродвигатели;
— двигатели, использующие энергию предварительно сжатого воздуха;
— двигатели, использующие энергию предварительно раскрученного маховика, — маховичные двигатели.
Наибольшее распространение на современных автомобилях получили поршневые двигатели внутреннего сгорания, использующие в качестве источника энергии жидкое топливо нефтяного происхождения (бензин, дизельное топливо) или горючий газ.
К системе «двигатель» относят также подсистемы хранения и подачи топлива и удаления продуктов сгорания (системы выпуска).
Движитель автомобиля обеспечивает связь автомобиля с внешней средой, позволяет ему «отталкиваться» от опорной поверхности (дороги) и преобразует энергию двигателя в энергию поступательного движения автомобиля. Основной тип движителя автомобиля — колесо. Иногда в автомобилях применяются комбинированные движители: для автомобилей высокой проходимости колесно-гусеничные движители (рис. 1.11), для автомобилей–амфибий колесный (при движении по дороге) и водометный (на плаву) движители.
Трансмиссия (силовая передача) автомобиля передает энергию от двигателя к движителю и преобразует ее в удобную для использования в движителе форму. Трансмиссии могут быть:
— механические (передается механическая энергия);
— электрические (механическая энергия двигателя преобразуется в электрическую, передается к движителю по проводам и там снова преобразуется в механическую);
— гидрообъемная (вращение коленчатого вала двигателя преобразуется насосом в энергию потока жидкости, передающейся по трубопроводам к колесу, и там, посредством гидромотора, снова преобразуется во вращение);
— комбинированные (электромеханические, гидромеханические).
Механическая трансмиссия классического автомобиля
Наибольшее распространение на современных автомобилях получили механическая и гидромеханическая трансмиссии. Механическая трансмиссия состоит из фрикционной муфты (сцепления), преобразователя крутящего момента, главной передачи, дифференциала, карданных передач, полуосей.
Сцепление — муфта, дающая возможность кратковременно разъединить и плавно соединить двигатель и связанные с ним механизмы трансмиссии.
Преобразователем крутящего момента является механизм, позволяющий ступенчато или бесступенчато изменять крутящий момент двигателя и направление вращения валов трансмиссии (для движения задним ходом). При ступенчатом изменении момента данный механизм называется коробкой передач, при бесступенчатом — вариатором.
Главная передача — зубчатый редуктор с коническими и (или) цилиндрическими шестернями, повышающий крутящий момент, передаваемый от двигателя к колесам.
Дифференциал — механизм, распределяющий крутящий момент между ведущими колесами и позволяющий вращаться им с разными угловыми скоростями (при движении на поворотах или по неровной дороге).
Карданные передачи представляют собой валы с шарнирами, связывающие между собой агрегаты трансмиссии и колес. Они позволяют передавать крутящий момент между указанными механизмами, валы которых расположены не соосно и (или) изменяют при движении взаимное расположение друг относительно друга. Количество карданных передач зависит от конструкции трансмиссии.
Гидромеханическая трансмиссия отличается от механической тем, что вместо сцепления устанавливается гидродинамическое устройство (гидромуфта или гидротрансформатор), выполняющее как функции сцепления, так и функции бесступенчатого вариатора. Как правило, это устройство размещается в одном корпусе с механической коробкой передач.
Электрические трансмиссии применяются сравнительно редко (например, на тяжелых карьерных самосвалах, на внедорожных автомобилях) и включают в себя: генератор на двигателе, провода и систему электроуправления, электромоторы на колесах (электрические мотор-колеса).
При жестком соединении двигателя, сцепления и коробки передач (вариатора) данная конструкция называется силовым агрегатом.
В ряде случаев на автомобиле могут быть установлены несколько двигателей различных типов (например, двигатель внутреннего сгорания и электродвигатель), связанных друг с другом трансмиссией. Такая конструкция называется гибридной силовой установкой.
Системы управления автомобилем включают в себя:
— рулевое управление;
— тормозную систему;
— управление прочими системами автомобиля (двигателем, трансмиссией, температурой в кабине и т. д.). Рулевое управление служит для изменения направления движения автомобиля, как правило, за счет поворота управляемых колес.
[Тормозная система]] служит для уменьшения скорости движения автомобиля вплоть до полной остановки и надежного удержания его на месте.
Несущая система в виде лонжеронной рамы
Несущая система автомобиля служит для крепления на ней всех прочих узлов, агрегатов и систем автомобиля. Она может выполняться в виде плоской рамы или объемного несущего кузова. Подвеска несущей системы обеспечивает упругую связь колес с несущей системой и обеспечивает плавность хода автомобиля при движении по неровной дороге, уменьшает вертикальные динамические нагрузки, передаваемые на автомобиль от дороги.
Кузов (кабина) служит для размещения водителя, пассажиров, груза или специального оборудования, транспортируемого автомобилем. Как было отмечено выше, в ряде случаев кузов совмещает функции несущей системы (несущий кузов). К системе автомобиля «кузов» принято относить также многие узлы, агрегаты, подсистемы, не попавшие в другие системы автомобиля (внешние световые приборы, климатические установки в салоне, ряд устройств безопасности для водителя и пассажиров и т. д.).
Устройство и конструкция автомобиля (далее):
Конструктивная схема автомобиля это
Автомобиль — это сложная механическая система, состоящая из набора взаимосвязанных узлов и агрегатов, выполняющих различные функции. Традиционно в конструкции автомобиля выделяли три основных блока: двигатель как источник механической энергии, шасси как совокупность элементов передачи крутящего момента к ведущим колёсам и управления автомобилем и кузов как внешняя оболочка и пространство для размещения пассажиров и багажа. С появлением несущих кузовов границы между кузовом и шасси практически стёрлись, но сохранилось функциональное разделение автомобиля на механическую часть, салон, грузовое отделение и внешнее оформление. Подробнее об экстерьере и интерьере автомобиля см. страницы Дизайн автомобиля и Интерьер автомобиля.
Во внутреннем устройстве автомобиля можно выделить шесть структурных компонентов:
- несущую конструкцию;
- двигатель;
- трансмиссию;
- ходовую часть;
- системы управления;
- электрооборудование.
Устройство автомобиля | ||
---|---|---|
Несущая конструкция | Несущая система автомобиля представляет собой остов, к которому крепятся все остальные агрегаты: двигатель, трансмиссия, подвеска, рулевое управление и т.д. Несущее основание должно быть достаточно прочным и жёстким, так как на него приходится основная нагрузка при движении автомобиля. Существует два типа несущих систем: отдельная рама (шасси) и несущий кузов. Рама — это металлическая конструкция, которая несёт на себе кузов и другие компоненты. У автомобилей с отдельной рамой кузов является независимым структурным элементом и крепится к раме с помощью кронштейнов. Рама, двигатель, трансмиссия, подвеска, колёса и системы управления вместе образуют отдельное шасси, способное самостоятельно передвигаться без кузова. Рама обычно сделана из стали или алюминия и сама по себе выступает элементом пассивной безопасности машины. По форме выделяют несколько разновидностей рам:
Преимущества рамной конструкции заключаются в простоте конвейерной сборки, возможности постоянного изменения дизайна автомобиля, простоте замены повреждённых панелей кузова, способности выдерживать большие нагрузки и хорошей шумо- и виброизоляции салона. В то же время рамные автомобили всегда тяжелее машин с несущим кузовом, при этом их конструкция невыгодна с точки зрения безопасности и рационального размещения узлов и агрегатов, а салон меньше по объёму из-за проходящих под кузовом лонжеронов. В наше время рамное шасси сохранилось только на грузовиках, полноразмерных пикапах и больших внедорожниках. В современных легковых автомобилях функции рамы выполняет несущий кузов, который несёт на себе всё внутреннее оборудование. Как правило, такой кузов имеет несущий каркас из сваренных деталей и днище, а к ним крепятся подвижные элементы (двери, капот, багажник). Ранние автомобили с несущим кузовом оснащались приваренной к кузову обычной рамой или передним и задним подрамниками, забиравшими на себя часть нагрузки. Среди несущих кузовов различают каркасно-панельные (все внешние панели закреплены на внутреннем металлическом или деревянном каркасе), скелетные (панели являются несущими наряду с каркасом) и оболочковые (панели сварены в цельный корпус, заменяющий каркас) конструкции. Также существует бескаркасно-скорлупный тип несущего кузова (монокок), выполненный из высокопрочных композитных материалов (стеклопластика, углеродного волокна) и не требующий дополнительных усилений (хотя иногда объединённый с лонжеронными подрамниками). Промежуточное положение между рамой и несущим кузовом занимает т.н. пространственная рама, которая сделана из алюминия или прочной стали и несёт на себе как внутренние агрегаты, так и отдельные панели кузова (обычно алюминиевые или пластиковые). На спортивных и гоночных автомобилях часто использовалась жёсткая пространственная рама из тонких труб. Лестничная рама Х-образная рама | |
Двигатель | Двигатель — источник механической энергии, необходимой для движения автомобиля. Двигатель вырабатывает механическую энергию за счёт преобразования другого вида энергии (энергии сгорания топлива, электричества, солнечной энергии и т.д.). Соответственно выделяют несколько типов двигателей, различающихся по конструкции и используемому топливу:
В наше время наиболее распространёнными на легковых автомобилях остаются четырёхтактные поршневые ДВС, которые делятся на бензиновые и дизельные. Конструкция поршневого ДВС включает не только сам двигатель (блок цилиндров, головка блока, КШМ, ГРМ), но и вспомогательные механизмы (системы хранения и подачи топлива, выпуска отработавших газов, охлаждения и смазки). Подробнее см. страницы Двигатель внутреннего сгорания и Виды ДВС. | |
Трансмиссия | Трансмиссия — это совокупность агрегатов, предназначенных для передачи крутящего момента от двигателя к ведущим колёсам, а также изменения его величины и направления. Простейшим вариантом трансмиссии является прямая передача, соединяющая двигатель с ведущим мостом напрямую. Однако в большинстве случаев частота вращения коленчатого вала поршневого ДВС не совпадает с оборотами колёс, поэтому возникает необходимость изменения передаточного числа трансмиссии. Для этого в состав
| |
Ходовая часть | Колесо — это движитель автомобиля, обеспечивающий его связь с дорогой и передвижение по ней. Колесо обычно состоит из ступицы, диска и металлического обода, а одевающаяся на обод шина является отдельным элементом. Размер колеса — это диаметр его обода в дюймах, обычно колеблется в пределах 10-25″. В каждом автомобиле есть ведущие (соединённые с трансмиссией и создающие при контакте с дорогой тяговое усилие), ведомые и управляемые (поворачивающиеся по команде водителя) колёса. Управляемые колёса всегда передние, ведущими могут быть как передние, так и задние. По конструкции выделяют следующие виды колёс:
Шина — упругая резиновая оболочка колеса, обеспечивающая сцепление с дорогой и поглощающая удары. Пневматическая шина состоит из покрышки с протектором и камеры (в бескамерных шинах камера отсутствует). В зависимости от внутренней структуры различают радиальные и диагональные шины, от предназначения — летние, зимние и всесезонные. В маркировке шины по метрической системе указываются ширина профиля (мм), отношение высоты профиля к ширине (%), тип (радиальная или диагональная) и диаметр обода («). Например, 225/50 R16. В особых случаях вместо колёс на автомобилях применяются комбинированные движители. Это может быть полугусеничный движитель, состоящий из передних колёс (иногда со съёмными лыжами) и одного или двух задних мостов на гусеницах. Полугусеничные движители использовались на довоенных автомобилях повышенной проходимости и автосанях. Очень редко встречаются комбинации колёс и водомётного движителя (в амфибиях) или лопастного винта (в автомобилях на воздушной подушке). Мост — это агрегат, соединяющий колёса на одной оси. Мосты крепятся к раме или несущему кузову с помощью подвески (см. Подвеска). Мост может быть ведущим (с ведущими задними колёсами), управляемым (в заднеприводных автомобилях с ведомыми передними колёсами), комбинированным (в переднеприводных и полноприводных автомобилях с ведущими передними колёсами) и поддерживающим (в переднеприводных автомобилях с ведомыми задними колёсами). По типу подвески выделяют неразрезные (зависимая подвеска) и разрезные (независимая подвеска) мосты. | |
Системы управления | Назначение рулевого управления заключается в изменении направления движения автомобиля за счёт поворота управляемых колёс. Состоит из рулевого колеса, рулевого механизма и рулевого привода. Водитель управляет автомобилем, вращая рулевое колесо, расположенное под необходимым углом. Рулевой механизм увеличивает приложенное усилие водителя и преобразует вращательное движение рулевого колеса в поступательное движение рулевых тяг. Он имеет передаточное число, обеспечивающее поворот колёс на максимальный угол за несколько оборотов рулевого колеса. Рулевой привод — это система тяг и шарниров, соединяющих рулевой механизм с управляемыми колёсами независимо от колебаний подвески. Детали рулевого привода образуют рулевую трапецию. Существует три основных типа рулевых механизмов: Для снижения прикладываемого к рулевому колесу усилия применяются усилители рулевого управления. Они бывают трёх типов: гидравлические (ГУР), электрогидравлические (ЭГУР) и электрические (ЭУР). Тормозная система предназначена для снижения скорости движения автомобиля вплоть до полной остановки, а также для надежного удержания его на месте. Рабочая тормозная система обеспечивает замедление и остановку автомобиля, а стояночная — удерживает его неподвижно на дороге. Подробнее см. страницу Тормоза ➤ Adblockdetector |