Меню

Как изменить ток якоря двигателя постоянного тока

Способы изменения скорости и направления вращения якоря (ротора).

Для увеличения скорости вращения якоря в тяговых машинах постоянного тока необходимо увеличить силу тока. Из закона Ома понятно, что для увеличения силы тока нужно либо уменьшить сопротивление, либо увеличить напряжение.

I=U/R,

где I – сила тока,
U – напряжение,
R – сопротивление.

Изменение величины сопротивления производится с помощью реостатного контроллера. Так как напряжение контактной сети постоянно, то изменение напряжения можно производить с помощью переключения групп тяговых двигателей с последовательного соединения на параллельное.

При большой скорости вращения якоря в магнитном поле на его обмотках образуется противо-ЭДС, что приводит к уменьшению тока якоря, а следовательно и к уменьшению скорости его вращения. Для уменьшения противо-ЭДС необходимо уменьшить магнитный поток Ф полюсов двигателя. Для этого часть тока отводится от обмоток возбуждения по шунтирующей цепи и магнитное поле тяговых двигателей ослабляется.

Для изменения направления вращения якоря двигателя постоянного тока необходимо изменить направление движения тока в обмотках возбуждения или в обмотках якора. Тогда направление силы Ампера, определяемое по правилу левой руки, так же изменится на противоположное.

Наиболее распространенные способы регулирования скорости вращения ротора асинхронного двигателя: изменение напряжения, подводимого к обмотке статора, изменение частоты питающего напряжения, а также переключение числа пар полюсов.

Частота вращения ротора, выраженная через скольжение, определяется формулой:

Отсюда видно, что для увеличения частоты вращения ротора n2 нужно увеличить частоту вращения магнитного поля n1. Для увеличения частоты вращения поля нужно изменить частоту питающего напряжения на полюсах статора.

Направление вращения ротора асинхронного двигателя определяется направлением вращения его магнитного поля, а направление вращения магнитного поля обуславливается последовательностью фаз (А, В, С) трехфазной сети. Для изменения направления вращения двигателя достаточно изменить направление вращения магнитного поля, создаваемого обмотками статора. Это достигается изменением порядка поступления импульсов тока в отдельные обмотки.

Тяговый двигатель

Тяговый электродвигатель переменного тока — трехфазный, асинхронный с короткозамкнутым ротором, четырехполюсный с инверторным управлением (переменное напряжение и частота) предназначен для преобразования в тяговом режиме потребляемой из контактной сети электрической энергии в механическую энергию вращения ротора для обеспечения вращения колесных пар вагона и обратного преобразования в режимах реостатного и рекуперативного торможения вагона механической энергии в электрическую.

Электродвигатель относится к классу самовентилируемых, имеет вентилятор, устанавливаемый на валу ротора на стороне противоположной выходному валу.

В качестве подшипников применяется компактная подшипниковая система компании Hitachi, позволившая увеличить интервал времени между проведением текущего ремонта.

Поскольку управление двигателем осуществляется при помощи оборудова-ния инверторного управления VVVF, имеется возможность контроля вибрации и температуры.

Контроль частоты вращения двигателя обеспечивает датчик скорости, кото-рый установлен на боковой поверхности двигателя (противоположной ведущей шестерни).

Двигатель состоит из статора и ротора.

Корпус статора представляет собой механическую конструкцию с элементами крепления двигателя на тележке. В статоре намотана трехфазная обмотка с вакуумной пропиткой лаком, в которой использован изоляционный материал.

Ротор выполнен в виде короткозамкнутой обмотки. Стержни обмотки ротора изготовлены из медно-цинкового сплава. Валдвигателявыполненизхромиро-ванноймолибденовойстали.

характеристика ДК-108 ДК-117
1 Номинальное напряжение в тяговом режиме, В 375 375
2 Номинальное напряжение в генераторном режиме, В 750 750
3 Номинальная мощность, Вт 66 110
4 Расчетное ослабление поля, % 35 28
5 Используемое ослабление поля, % 55 50
6 Ток часового режима, А 202 330
7 Тип обмотки якоря волновая петлевая
8 Воздушный зазор между полюсом и якорем, мм 3,25 2,5
9 Масса, кг 630 700
10 Суммарная величина сопротивления обмоток при температуре 20 0 С, Ом 0,13 0,07
Режим Часовой
Мощность (кВт) 170
Напряжение (В) 530
Скоростьвращения (об/мин) 1269
Частота (Гц) 43
Скольжение (%) 1.6
Максимальнаярабочаячастота 3766
вращения (об/мин)
Максимальнодопустимыйток (А) 321
Вес (кг) 720

Асинхронный тяговый двигатель в сравнении с двигателем постоянного тока имеет большую мощность при том же весе. Кроме того конструкция асинхронного двигателя проще и надежней. Преимуществом асинхронного двигателя перед коллекторным является отсутствие коллекторно-щеточного узла.

Читайте также:  Общее устройство тепловых двигателей

Недостатком асинхронного двигателя при эксплуатации в метрополитене является необходимость установки дополнительного оборудования (инверторов) для преобразования постоянного тока в переменный.

Токоприемники рельсовые

Токоприемник рельсовый предназначен для нижнего токосъема с контактного рельса при любых скоростях и любых атмосферных условиях.

Контактная пластина токоприемника скользит по нижней поверхности контактного рельса, обеспечивая надежный токосъем.

Токоприемник рельсовый ТР–3

Общий вид токоприемника представлен на рис.1

Рис.1 Токоприемник ТР-3

1- башмак; 2- контактная пластина; 3,4- левый и правый кронштейн; 5- башмакодержатель; 6- соединительная пластина; 7- две пружины; 8- два шунта; 9- палец для удочки; 10- валик ;11- узел крепления кабеля ТР

Токоприемник монтируется на деревянном брусе, который является изолятором. Брусья токоприемника крепятся болтами по два с каждой стороны вагона к приливам букс колесных пар. Всего на вагоне четыре токоприемника

Держатель башмака с левым и правым кронштейнами связан валиком. Поэтому держатель башмака может поворачиваться по валику.

Левый и правый кронштейны соединены друг с другом стальной соединительной пластиной, расположенной снизу. Поверхности соприкосновения держателя башмака с башмаком имеют гребенку для регулировки высоты подвески башмака над уровнем головки ходового рельса. В нижней части башмака имеются контрольные лунки для определения степени износа контактной пластины. Скосы контактной пластины обеспечивают плавность входа башмака ТР под контактный рельс.

В верхней части держателя башмака имеются приливы с гнездами для установки в них пружин, каждая из которых другим концом упирается в гнезда левого и правого кронштейна. Пружины токоприемника удерживают башмак в верхнем положении и создают необходимое контактное нажатие башмака на контактный рельс.

На правом кронштейне установлен контактный палец, на который надевается втулка подвижного кабеля электродепо «удочка», для подачи высокого напряжения на вагон в условиях депо. К левому кронштейну крепится силовой кабель ТР.

Держатель башмака соединен двумя гибкими медными шунтами с соединительной пластиной кронштейнов, чтобы ток не шел по осевому соединению.

Для отжатия башмака ТР от контактного рельса в левом кронштейне имеется отверстие, куда вставляется штырь, фиксирующий башмак в крайнем нижнем положении.

На новых вагонах установлен пневматический цилиндр для дистанционного отжатия башмаков.

Силовые кабели всех ТР соединены в соединительной коробке, поэтому при наличии напряжения хотя бы на одном токоприемнике, все остальные токоприемники вагона так же будут под напряжением.

Дата добавления: 2018-04-15 ; просмотров: 1312 ; Мы поможем в написании вашей работы!

Регулирование частоты вращения двигателя постоянного тока независимого возбуждения ДПТ НВ

Способы регулирования частоты вращения двигателей оцени­ваются следующими показателями: плавностью регулирования; диапазоном регулирования, определяемым отношением наиболь­шей частоты вращения к наименьшей; экономичностью регулиро­вания, определяемой стоимостью регулирующей аппаратуры и потерями электроэнергии в ней.

Из (29.5) следует, что регулировать частоту вращения двига­теля независимого возбуждения можно изменением сопротивле­ния в цепи якоря, изменением основного магнитного потока Ф, изменением напряжения в цепи якоря.

Регулирование частоты вращения ДПТ НВ введение дополнительного сопротивления в цепь якоря

Дополнительное сопротивление (реостат rд) включают в цепь яко­ря аналогично пусковому реостату (ПР). Однако в отличие от по­следнего оно должно быть рассчитано на продолжительное проте­кание тока.

При включении сопротивления rд в цепь якоря выражение частоты (29.5) принимает вид

где — частота вращения в режиме х.х.;

— изменение частоты вращения, вызван­ное падением напряжения в цепи якоря.

С увеличением rд возрастает , что ведет к уменьшению час­тоты вращения. Зависимость n = f(rд) иллюстрируется также и механическими характеристиками двигателя независимого воз­буждения (рис. 29.4, а): с повышением rд увеличивается наклон механических характеристик, а частота вращения при заданной нагрузке на валу (M = Mном ) уменьшается. Этот способ обеспечи­вает плавное регулирование частоты вращения в широком диапа­зоне (только в сторону уменьшения частоты от номинальной), од­нако он неэкономичен из-за значительных потерь электроэнергии в регулировочном реостате (I 2 a *rД), которые интенсивно растут с увеличением мощности двигателя.

Читайте также:  Ремонт машины после аварии до суда

Рис. 29.4. Механические характеристики двигателя параллельно­го возбуждения:

а — при введении в цепь якоря добавочного сопротивления;

б — при изменении основного магнитного потока;

в — при изменении напряже­ния в цепи якоря

Регулирование частоты вращения ДПТ НВ изменением основного магнитного потока

Этот способ регулирования в двигателе независимого возбуждения реализуется посредством реостата rрег в цепи обмотки возбуждения. Так, при уменьшении сопротивления реостата возрастает магнитный поток обмотки возбуждения, что сопровождается по­нижением частоты вращения [см. (29.5)]. При увеличении rрег час­тота вращения растет. Зависимость частоты вращения от тока воз­буждения выражается регулировочной характеристикой двигателя n=f(IВ) при и .

Из выражения (29.5) следует, что с уменьшением магнитного потока Ф частота вращения n увеличивается по гиперболическому закону (рис. 29.5,а). Но одновременно уменьшение Ф ведет к рос­ту тока якоря Ia = M/(Cм*Ф). При потоке ток якоря дости­гает значения , т. е. падение напряжения в цепи яко­ря достигает значения, равного половине напряжения, подведенного к якорю . В этих условиях частота вращения двигателя достигает максимума nmax. При дальнейшем уменьшении потока частота вращения двигателя начинает убывать, так как из-за интенсивного роста тока Ia второе слагаемое выражения (29.9) нарастает быстрее первого.

При небольшом нагрузочном моменте на валу двигателя мак­симальная частота вращения nmax во много раз превосходит номи­нальную частоту вращения двигателя nном и является недопусти­мой по условиям механической прочности двигателя, т. е. может привести к его «разносу». Учитывая это, при выборе реостата rрег необходимо следить за тем, чтобы при полностью введенном его сопротивлении частота вращения двигателя не превысила допус­тимого значения.

Например, для двигателей серии 2П допускается превышение частоты вращения над номинальной не более чем в 2—3 раза. Необходимо также следить за надежностью электриче­ских соединений в цепи обмотки возбуждения двигателя, так как при разрыве этой цепи магнитный поток уменьшается до значения потока остаточного магнетизма Фост, при котором частота враще­ния может достигнуть опасного значения.

Вид регулировочных характеристик n = f(Ф) зависит от значе­ния нагрузочного момента M2 на валу двигателя: с ростом M2 мак­симальная частота вращения nmax уменьшается (рис. 29.5, б).

Рис. 29.5. Регулировочные характеристики двигателя независимого возбуждения

Недостаток рассмотренного способа регулирования частоты вращения состоит в том, что при изменении магнитного потока Ф меняется угол наклона механической характеристики двигателя.

Рассмотренный способ регулирования частоты вращения прост и экономичен, так как в двигателях независимого возбуж­дения ток IВ = (0,01 — 0,07)I а , а поэтому потери в регулировочном реостате невелики.

Однако диапазон регулирования обычно составляет nMAX/nMIN = 2 — 5. Объясняется это тем, что нижний предел частоты вращения обусловлен насыщением машины, ограничивающим значение магнитного потока Ф, а верхний предел частоты опасностью «разноса» двигателя и усилением влияния реакции якоря, иска­жающее действие которого при ослаблении основною магнитного потока Ф усиливается и ведет к искрению на коллекторе или же к появлению кругового огня.

Регулирование частоты вращения ДПТ НВ изменение напряжения в цепи якоря

Регулирование часто­ты вращения двигателя изменением питающего напряжения при­меняется лишь при IB = const, т. е. при раздельном питании цепей обмотки якоря и обмотки возбуждения при независимом возбуж­дении.

Частота вращения в режиме х.х. n пропорциональна напря­жению, а от напряжения не зависит, поэтому ме­ханические характеристики двигателя при изменении напряжения не меняют угла наклона к оси абсцисс, а смещаются по высоте, оставаясь параллельными друг другу (см. рис. 29.4, в). Для осуще­ствления этого способа регулирования необходимо цепь якоря двигателя подключить к источнику питания с регулируемым на­пряжением. Для управления двигателями малой и средней мощно­сти в качестве такого источника можно применить регулируемый выпрямитель, в котором напряжение постоянного тока меняется регулировочным автотрансформатором (АТ), включенным на вхо­де выпрямителя (рис. 29.6,а).

Для управления двигателями большой мощности целесооб­разно применять генератор постоянного тока независимого возбу­ждения; привод осуществляется посредством приводного двигате­ля (ПД), в качестве которого обычно используют трехфазный двигатель переменного тока. Для питания постоянным током це­пей возбуждения генератора Г и двигателя Д используется возбу­дитель В — генератор постоянного тока, напряжение на выходе которого поддерживается неизменным. Описанная схема управле­ния двигателем постоянного тока (рис. 29.6, б) известна под на­званием системы «генератор — двигатель» (Г—Д).

Читайте также:  Допуск масла для двигателя m112

Рис. 29.6. Схемы включения двигателей постоянного тока при регули­ровании частоты вращения изменением напряжения в цепи якоря

Изменение напряжения в цепи якоря позволяет регулировать частоту вращения двигателя вниз от номинальной, так как напря­жение свыше номинального недопустимо. При необходимости регулировать частоту вращения вверх от номинальной можно вос­пользоваться изменением тока возбуждения двигателя.

Изменение направления вращения (реверс) двигателя, рабо­тающего по системе ГД, осуществляется изменением направле­ния тока в цепи возбуждения генератора Г переключателем П, т. е. переменой полярности напряжения на его зажимах. Если двигатель постоянного тока работает в условиях резко переменной на­грузки, то для смягчения колебаний мощности, потребляемой ПД из трехфазной сети, на вал ПД помещают маховик М, который за­пасает энергию в период уменьшения нагрузки на двигатель Д и отдает ее в период интенсивной нагрузки двигателя.

Регулирование частоты вращения изменением напряжения в цепи якоря обеспечивает плавное экономичное регулирование в широком диапазоне nMAX/nMIN ≥ 25 . Наибольшая частота вращения здесь ограничивается условиями коммутации, а наименьшая — условиями охлаждения двигателя.

Еще одним достоинством рассматриваемого способа регули­рования является то, что он допускает безреостатный пуск двига­теля при пониженном напряжении.

Импульсное регулирование частоты вращения ДПТ НВ

Сущность этого способа регулирования иллюстрируется схемой, изображен­ной на рис. 29.7, а. Цепь обмотки якоря двигателя параллельного (независимого) возбуждения периодически прерывается ключом К. Во время замыкания цепи якоря на время t к обмотке якоря подводится напряжение U = Uимпи ток в ней достигает значения Iamax. Затем ключом К цепь якоря размыкают и ток в ней убывает, достигая к моменту следующего замыкания цепи значения Iamin (при размыкании ключа К ток в обмотке якоря замыкается через диод VD). При следующем замыкании ключа К ток достигает зна­чения Iamax и т. д. Таким образом, к обмотке якоря подводится не­которое среднее напряжение

где Т— отрезок времени между двумя следующими друг за другом импульсами напряжения (рис. 29.7, б); — коэффициент управления.

При этом в обмотке якоря проходит ток, среднее значение которого .

При импульсном регулировании частота вращения двигателя

Таким образом, импульсное регулирование частоты вращения аналогично регулированию изменением подводимого к цепи якоря напряжения. С целью уменьшения пульсаций тока в цепи якоря включена катушка индуктивности (дроссель) , а частота подачи импульсов равна 200—400 Гц.

На рис. 29.7, в представлена одна из возможных схем им­пульсного регулирования, где в качестве ключа применен управ­ляемый диод — тиристор VS. Открывается тиристор подачей крат­ковременного импульса от генератора импульсов (ГИ) на управляющий электрод (УЭ) тиристора. Цепь L1C, шунтирующая тиристор, служит для запирания последнего в период между двумя управляющими импульсами. Происходит это следующим образом: при открывании тиристора конденсатор С перезаряжается через контур L1C и создает на силовых электродах тиристора напряже­ние, обратное напряжению сети, которое прекращает протекание тока через тиристор. Параметрами цепи L1C определяется время (с) открытого состояния тиристора: . Здесь L1 выража­ется в генри (Гн); С — в фарадах (Ф).

Рис. 29.7. Импульсное регулирование частоты вращения двига­теля постоянного тока

Значение среднего напряжения Uср регулируется изменением частоты следования управляющих импульсов от генератора им­пульсов на тиристор VS.

Жесткие механические характеристики и возможность плав­ного регулирования частоты вращения в широком диапазоне оп­ределили области применения двигателей независимого возбуж­дения в станочных приводах, вентиляторах, а также во многих других случаях регулируемого электропривода, где требуется ус­тойчивая работа при колебаниях нагрузки.

Adblock
detector