Меню

Как изменить направление вращения двигателя независимого возбуждения

Регулирование частоты вращения двигателя постоянного тока независимого возбуждения ДПТ НВ

Способы регулирования частоты вращения двигателей оцени­ваются следующими показателями: плавностью регулирования; диапазоном регулирования, определяемым отношением наиболь­шей частоты вращения к наименьшей; экономичностью регулиро­вания, определяемой стоимостью регулирующей аппаратуры и потерями электроэнергии в ней.

Из (29.5) следует, что регулировать частоту вращения двига­теля независимого возбуждения можно изменением сопротивле­ния в цепи якоря, изменением основного магнитного потока Ф, изменением напряжения в цепи якоря.

Регулирование частоты вращения ДПТ НВ введение дополнительного сопротивления в цепь якоря

Дополнительное сопротивление (реостат rд) включают в цепь яко­ря аналогично пусковому реостату (ПР). Однако в отличие от по­следнего оно должно быть рассчитано на продолжительное проте­кание тока.

При включении сопротивления rд в цепь якоря выражение частоты (29.5) принимает вид

где — частота вращения в режиме х.х.;

— изменение частоты вращения, вызван­ное падением напряжения в цепи якоря.

С увеличением rд возрастает , что ведет к уменьшению час­тоты вращения. Зависимость n = f(rд) иллюстрируется также и механическими характеристиками двигателя независимого воз­буждения (рис. 29.4, а): с повышением rд увеличивается наклон механических характеристик, а частота вращения при заданной нагрузке на валу (M = Mном ) уменьшается. Этот способ обеспечи­вает плавное регулирование частоты вращения в широком диапа­зоне (только в сторону уменьшения частоты от номинальной), од­нако он неэкономичен из-за значительных потерь электроэнергии в регулировочном реостате (I 2 a *rД), которые интенсивно растут с увеличением мощности двигателя.

Рис. 29.4. Механические характеристики двигателя параллельно­го возбуждения:

а — при введении в цепь якоря добавочного сопротивления;

б — при изменении основного магнитного потока;

в — при изменении напряже­ния в цепи якоря

Регулирование частоты вращения ДПТ НВ изменением основного магнитного потока

Этот способ регулирования в двигателе независимого возбуждения реализуется посредством реостата rрег в цепи обмотки возбуждения. Так, при уменьшении сопротивления реостата возрастает магнитный поток обмотки возбуждения, что сопровождается по­нижением частоты вращения [см. (29.5)]. При увеличении rрег час­тота вращения растет. Зависимость частоты вращения от тока воз­буждения выражается регулировочной характеристикой двигателя n=f(IВ) при и .

Из выражения (29.5) следует, что с уменьшением магнитного потока Ф частота вращения n увеличивается по гиперболическому закону (рис. 29.5,а). Но одновременно уменьшение Ф ведет к рос­ту тока якоря Ia = M/(Cм*Ф). При потоке ток якоря дости­гает значения , т. е. падение напряжения в цепи яко­ря достигает значения, равного половине напряжения, подведенного к якорю . В этих условиях частота вращения двигателя достигает максимума nmax. При дальнейшем уменьшении потока частота вращения двигателя начинает убывать, так как из-за интенсивного роста тока Ia второе слагаемое выражения (29.9) нарастает быстрее первого.

При небольшом нагрузочном моменте на валу двигателя мак­симальная частота вращения nmax во много раз превосходит номи­нальную частоту вращения двигателя nном и является недопусти­мой по условиям механической прочности двигателя, т. е. может привести к его «разносу». Учитывая это, при выборе реостата rрег необходимо следить за тем, чтобы при полностью введенном его сопротивлении частота вращения двигателя не превысила допус­тимого значения.

Например, для двигателей серии 2П допускается превышение частоты вращения над номинальной не более чем в 2—3 раза. Необходимо также следить за надежностью электриче­ских соединений в цепи обмотки возбуждения двигателя, так как при разрыве этой цепи магнитный поток уменьшается до значения потока остаточного магнетизма Фост, при котором частота враще­ния может достигнуть опасного значения.

Вид регулировочных характеристик n = f(Ф) зависит от значе­ния нагрузочного момента M2 на валу двигателя: с ростом M2 мак­симальная частота вращения nmax уменьшается (рис. 29.5, б).

Рис. 29.5. Регулировочные характеристики двигателя независимого возбуждения

Недостаток рассмотренного способа регулирования частоты вращения состоит в том, что при изменении магнитного потока Ф меняется угол наклона механической характеристики двигателя.

Читайте также:  Выхлопные газы автомобилей как рассчитать

Рассмотренный способ регулирования частоты вращения прост и экономичен, так как в двигателях независимого возбуж­дения ток IВ = (0,01 — 0,07)I а , а поэтому потери в регулировочном реостате невелики.

Однако диапазон регулирования обычно составляет nMAX/nMIN = 2 — 5. Объясняется это тем, что нижний предел частоты вращения обусловлен насыщением машины, ограничивающим значение магнитного потока Ф, а верхний предел частоты опасностью «разноса» двигателя и усилением влияния реакции якоря, иска­жающее действие которого при ослаблении основною магнитного потока Ф усиливается и ведет к искрению на коллекторе или же к появлению кругового огня.

Регулирование частоты вращения ДПТ НВ изменение напряжения в цепи якоря

Регулирование часто­ты вращения двигателя изменением питающего напряжения при­меняется лишь при IB = const, т. е. при раздельном питании цепей обмотки якоря и обмотки возбуждения при независимом возбуж­дении.

Частота вращения в режиме х.х. n пропорциональна напря­жению, а от напряжения не зависит, поэтому ме­ханические характеристики двигателя при изменении напряжения не меняют угла наклона к оси абсцисс, а смещаются по высоте, оставаясь параллельными друг другу (см. рис. 29.4, в). Для осуще­ствления этого способа регулирования необходимо цепь якоря двигателя подключить к источнику питания с регулируемым на­пряжением. Для управления двигателями малой и средней мощно­сти в качестве такого источника можно применить регулируемый выпрямитель, в котором напряжение постоянного тока меняется регулировочным автотрансформатором (АТ), включенным на вхо­де выпрямителя (рис. 29.6,а).

Для управления двигателями большой мощности целесооб­разно применять генератор постоянного тока независимого возбу­ждения; привод осуществляется посредством приводного двигате­ля (ПД), в качестве которого обычно используют трехфазный двигатель переменного тока. Для питания постоянным током це­пей возбуждения генератора Г и двигателя Д используется возбу­дитель В — генератор постоянного тока, напряжение на выходе которого поддерживается неизменным. Описанная схема управле­ния двигателем постоянного тока (рис. 29.6, б) известна под на­званием системы «генератор — двигатель» (Г—Д).

Рис. 29.6. Схемы включения двигателей постоянного тока при регули­ровании частоты вращения изменением напряжения в цепи якоря

Изменение напряжения в цепи якоря позволяет регулировать частоту вращения двигателя вниз от номинальной, так как напря­жение свыше номинального недопустимо. При необходимости регулировать частоту вращения вверх от номинальной можно вос­пользоваться изменением тока возбуждения двигателя.

Изменение направления вращения (реверс) двигателя, рабо­тающего по системе ГД, осуществляется изменением направле­ния тока в цепи возбуждения генератора Г переключателем П, т. е. переменой полярности напряжения на его зажимах. Если двигатель постоянного тока работает в условиях резко переменной на­грузки, то для смягчения колебаний мощности, потребляемой ПД из трехфазной сети, на вал ПД помещают маховик М, который за­пасает энергию в период уменьшения нагрузки на двигатель Д и отдает ее в период интенсивной нагрузки двигателя.

Регулирование частоты вращения изменением напряжения в цепи якоря обеспечивает плавное экономичное регулирование в широком диапазоне nMAX/nMIN ≥ 25 . Наибольшая частота вращения здесь ограничивается условиями коммутации, а наименьшая — условиями охлаждения двигателя.

Еще одним достоинством рассматриваемого способа регули­рования является то, что он допускает безреостатный пуск двига­теля при пониженном напряжении.

Импульсное регулирование частоты вращения ДПТ НВ

Сущность этого способа регулирования иллюстрируется схемой, изображен­ной на рис. 29.7, а. Цепь обмотки якоря двигателя параллельного (независимого) возбуждения периодически прерывается ключом К. Во время замыкания цепи якоря на время t к обмотке якоря подводится напряжение U = Uимпи ток в ней достигает значения Iamax. Затем ключом К цепь якоря размыкают и ток в ней убывает, достигая к моменту следующего замыкания цепи значения Iamin (при размыкании ключа К ток в обмотке якоря замыкается через диод VD). При следующем замыкании ключа К ток достигает зна­чения Iamax и т. д. Таким образом, к обмотке якоря подводится не­которое среднее напряжение

Читайте также:  Замена диска сцепления автомобиля уаз

где Т— отрезок времени между двумя следующими друг за другом импульсами напряжения (рис. 29.7, б); — коэффициент управления.

При этом в обмотке якоря проходит ток, среднее значение которого .

При импульсном регулировании частота вращения двигателя

Таким образом, импульсное регулирование частоты вращения аналогично регулированию изменением подводимого к цепи якоря напряжения. С целью уменьшения пульсаций тока в цепи якоря включена катушка индуктивности (дроссель) , а частота подачи импульсов равна 200—400 Гц.

На рис. 29.7, в представлена одна из возможных схем им­пульсного регулирования, где в качестве ключа применен управ­ляемый диод — тиристор VS. Открывается тиристор подачей крат­ковременного импульса от генератора импульсов (ГИ) на управляющий электрод (УЭ) тиристора. Цепь L1C, шунтирующая тиристор, служит для запирания последнего в период между двумя управляющими импульсами. Происходит это следующим образом: при открывании тиристора конденсатор С перезаряжается через контур L1C и создает на силовых электродах тиристора напряже­ние, обратное напряжению сети, которое прекращает протекание тока через тиристор. Параметрами цепи L1C определяется время (с) открытого состояния тиристора: . Здесь L1 выража­ется в генри (Гн); С — в фарадах (Ф).

Рис. 29.7. Импульсное регулирование частоты вращения двига­теля постоянного тока

Значение среднего напряжения Uср регулируется изменением частоты следования управляющих импульсов от генератора им­пульсов на тиристор VS.

Жесткие механические характеристики и возможность плав­ного регулирования частоты вращения в широком диапазоне оп­ределили области применения двигателей независимого возбуж­дения в станочных приводах, вентиляторах, а также во многих других случаях регулируемого электропривода, где требуется ус­тойчивая работа при колебаниях нагрузки.

Реверсивное подключение однофазного асинхронного двигателя своими руками

Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять? Однофазный двигатель 220В — как поменять направление вращения?

Однофазный двигатель 220В — постановка задачи

Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже (однофазный двигатель 220В)

Уточним важные моменты:

  • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
  • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
  • Направление вращения ротора обозначено с помощью стрелок.

Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

Вариант 1: переподключение рабочей намотки (однофазный двигатель 220В)

Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

  1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
  2. Вы увидите, что к этой паре подсоединяются две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.
Читайте также:  Схема управления двухскоростного асинхронного двигателя

Схема подключения однофазного двигателя

В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

Вариант 2: переподключение пусковой намотки (однофазный двигатель 220В)

Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

  1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
  2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

Вариант 3: смена пусковой обмотки на рабочую, и наоборот

Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечаются коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

В этом случае поступают так:

  1. Снимают конденсатор с начального вывода А;
  2. Подсоединяют его к конечному выводу D;
  3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

Важно понимать

Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

  • Длина пусковой и рабочей намоток одинакова;
  • Площадь их поперечного сечения соответствует друг другу;
  • Эти провода изготавливаются из одного и того же материала.

Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

Adblock
detector