Устройство ходовой части
Устройство ходовой части
У стройство ходовой части — это раздел в котором вы найдете информацию о подвеске автомобиля, кузове, раме, колесах, балках мостов. Устройство подвески, схема подвески и конструкция подвески в статьях и рисунках. Советы опытных мастеров в ремонте подвески.
Х одовая часть автомобиля служит для перемещения транспортного по дороге. Ходовая часть устроена таким образом, чтобы человеку было удобно, комфортно передвигаться.
Д ля того, чтобы автомобиль мог передвигаться детали ходовой части соединяют кузов с колесами, гасят колебания во время движения, смягчают, воспринимают толчки и усилия. А для того, чтобы не возникало тряски и излишней вибрации во время езды ходовая часть включает в себя следующие элементы и механизмы: упругие элементы подвески, колеса и шины.
Х одовая часть автомобиля состоит из следующих основных элементов:
2. Б алок мостов
3. П ередней и задней подвески колес
4. К олес (диски, шины)
Т ипы подвесок автомобиля:
Подвеска Макферсон
Устройство подвески Макферсон — Подвеска макферсон это так называемая подвеска на направляющих стойках. Этот тип подвески подразумевает использование в качестве основного элемента амортизационной стойки. Подвеска Мак-Ферсон может использоваться как для задних, так и для передних колес.
Независимая подвеска
Независимой подвеска называется , потому что колёса одной оси не связаны жестко, это обеспечивает независимость одного колеса от другого (колеса не оказывают друг на друга никакого влияния).
Конструкция современной подвески. Современная подвеска это элемент автомобиля, который выполняет амортизационные и демпфирующие свойства, что связано с колебаниями автомобиля в вертикальном направлении. Качество и характеристики подвески позволят пассажирам испытать максимальный комфорт передвижения. Среди основных параметров комфортабельности автомобиля можно признать плавность колебания кузова.
Устройство балансирной подвески — балансирная подвеска особенно уместна для задних колес автомобиля, у которых есть передняя ведущую ось, это аргументируется тем, что такая подвеска почти совсем не занимает места на раме. Балансирная подвеска применяется в основном на трехосных автомобилях, средний и задний ведущие мосты у которых расположены рядом друг к другу. Иногда ее применяют на четырехосных автомобилях, а также многоосных прицепах. Балансирная подвеска бывает двух типов: зависимой и независимой. Зависимые подвески получили большую популярность.
Устройство подвески грузового автомобиля — это раздел в котором можно изучить строение, назначение, принцип работы подвески грузового автомобиля. Подвеска автомобиля ЗИЛ — раздел, в котором подробно описано устройство подвески грузового автомобиля ЗИЛ 130.
Подвеска обеспечивает упругую связь между рамой или кузовом с мостами автомобиля или непосредственно с его колесами, воспринимая вертикальные усилия и задавая требуюмую плавность хода. Также, подвеска служит для восприятия продольных и поперечных усилий и реактивных моментов, которые действуют между опорной плоскостью и рамой. Подвеска обеспечивает передачу толкающих и скручивающих усилий.
Э лементы ходовой части автомобиля:
— Управляемый мост — управляемый мост представляет собой балку, в которой на шарнирах установлены поворотные цапфы и соединительные элементы. Жесткая штампованная балка представляет собой основу управляемого моста. Соответственно передний управляемый мост это обычная поперечная балка с ведомыми управляемыми колесами, к которым не подводится крутящий момент от двигателя. Этот мост не ведущий и служит для поддерживания несущей системы автомобиля и обеспечения его поворота. Существует большой перечень различных типов управляемых мостов, которые применяются на грузовых (6х2) и легковых автомобилях (4х2).
— Упругие элементы подвески машины — у пругие элементы подвески автомобиля предназначены для смягчения толчков и ударов, а также снижения вертикальных ускорений и динамической нагрузки, которая передается на конструкцию при движении автомобиля. Упругие элементы подвески позволяют избежать прямого воздействия дорожных неровностей на профиль кузова и обеспечивают необходимую плавность хода. Пределы оптимальной плавности хода колеблются от 1-1,3 Гц.
Несущая система
Несущая система — важнейший элемент любого ТС. Она воспринимает все нагрузки, действующие на машину. Кроме того, несущая система является остовом ТС, к ней скрепятся все основные агрегаты и узлы (двигатель, механизмы трансмиссии, движитель через подвеску и т. д.).
Несущая система любого ТС должна быть достаточно прочной и жесткой при наименьшей массе, обладать высокой надежностью и необходимой технологичностью в производстве, быть достаточно коррозионностойкой, способствовать повышению проходимости машины и понижению ее центра тяжести, позволять наиболее удобно и экономно размещать и закреплять все монтируемые на ней агрегаты и узлы, а также допускать значительные ходы подвески.
Несущие системы колесных машин должны также допускать поворот управляемых колес на большие углы. Кроме общих требований к несущим системам отдельных типов ТС могут предъявляться дополнительные (специальные) требования. Например, необходимо, чтобы кузова легковых автомобилей имели форму, создающую минимальное сопротивление воздуха во время движения, и способствовали обеспечению безопасности и комфорта для водителя и пассажиров, а корпуса военных бронированных машин были пуле- и снарядостойкими.
Различают следующие типы несущих систем ТС: рамы, корпуса, кузова, металлоконструкции прицепов и полуприцепов.
Рамы в качестве несущих элементов используются в основном на грузовых автомобилях общетранспортного и многоцелевого назначения, колесных тягачах и длиннобазных шасси, а также на тракторах и ТС со специальными движителями. Кроме того, рамы имеют некоторые автобусы, гусеничные транспортеры, тягачи и легковые автомобили высшего класса. Рамы относительно просты по конструкции, технологичны в производстве и ремонте, универсальны (например, на одну и ту же раму можно установить различные кузова).
По конструкции рамы подразделяются на три типа: лонжеронные, хребтовые и комбинированные.
Наиболее широко распространены лонжеронные рамы (рис. а—в), состоящие из двух продольных балок (лонжеронов), нескольких поперечных балок (траверс), местных усилителей (там, где это необходимо) и переходных элементов (косынки, накладки и др.).
Лонжероны чаще всего представляют собой тонкостенные балки открытого поперечного сечения. Типичными сечениями являются швеллер (см. рис. а), двутавр и Z-образный профиль (рис. в). Иногда лонжероны имеют замкнутый профиль поперечного сечения (прямоугольник или квадрат). У наиболее распространенных лонжеронов швеллерного типа отношение высоты поперечного сечения к ширине полки составляет 2,8…3,5, а толщина стенки — 5… 10 мм. Балки лонжеронов обычно штампуют из стального листа, реже выполняют из стандартного проката.
Штампованные лонжероны легче и могут иметь переменный профиль по длине рамы (см. рис. а), благодаря чему достигается их повышенная равнопрочность. У большинства рам грузовых автомобилей наибольшее сечение лонжерона находится в средней части, а наименьшее — по краям.
Рис. Конструкции лонжеронных (а, в), хребтовых (г) и комбинированных (д, е) рам
Поперечины, соединяющие лонжероны друг с другом, перпендикулярны к ним (см. рис. а, в) или имеют в плане Х-образную форму (см. рис. б). Их сечения могут быть открытыми или замкнутыми. Как и лонжероны, поперечины обычно штампуют из стального листа и устанавливают по мере возможности регулярно в местах крепления кронштейнов рессор, двигателя и топливных баков, в местах установки оси балансирной тележки и т. д. В рамах автомобилей общетранспортного назначения высота профилей поперечин близка к высоте лонжеронов, что приближает эти конструкции к рамам плоского типа. С увеличением грузоподъемности ТС высота профилей лонжеронов существенно возрастает. Для установки агрегатов используются объемы, заключенные между лонжеронами в пределах их высоты. Поперечины в этом случае уже не выполняются равновысокими с лонжеронами. Размеры сечений поперечин существенно уменьшаются, а их число увеличивается (см. рис. в).
Лонжероны с поперечинами соединяются преимущественно с помощью клепки в холодном состоянии, реже — сварки. Сварные рамы более жесткие. Их недостатками являются сложность ремонта и наличие после сварки остаточных напряжений. Поперечины крепятся к полкам или стенкам лонжеронов. Возможно также их крепление и к полкам, и к стенкам одновременно.
Хребтовые рамы могут быть разъемными и неразъемными. Чаще всего применяются разъемные рамы. Они имеют одну центральную продольную балку, обычно трубчатого сечения (рис. г). Эта балка составлена из картеров агрегатов трансмиссии (коробка передач, главные передачи) и патрубков, соединяющих эти картеры. Патрубки и картеры соединяются друг с другом с большой точностью при помощи призонных шпилек и болтов. Кроме центральной продольной балки хребтовая рама имеет поперечно расположенные кронштейны с лапами, служащими опорами для крепления кабины, грузовой платформы, двигателя и других агрегатов.
Хребтовые рамы имеют следующие преимущества по сравнению с лонжеронными: меньшая масса и материалоемкость машины, так как картеры агрегатов трансмиссии используются в качестве несущих элементов; более высокая крутильная жесткость, что особенно важно для эксплуатируемых в тяжелых дорожных условиях полноприводных многоосных автомобилей; возможность на основе одних и тех же агрегатов и узлов создавать автомобили с разным числом осей и различной базой. К недостаткам таких рам относятся затрудненный доступ к механизмам трансмиссии при обслуживании и ремонте, необходимость использования высокопрочных легированных сталей, повышенная коцструктивная сложность трансмиссии и подвески, высокие требования к точности изготовления и сборке.
Комбинированные рамы (рис. д, е) содержат элементы как лонжеронных, так и хребтовых рам, т. е. имеют центральную балку, лонжероны и поперечинй. Центральная балка обычно располагается в средней части рамы, а.лонжероны с поперечинами — по краям.
Корпуса в качестве несущих систем применяются чаще всего на гусеничных транспортерах и тягачах, бронированных колесных и гусеничных машинах, а также на .амфибийных машинах. Существует большое разнообразие конструкций корпусов. Они различаются по размерам, форме, применяемым материалам, способам соединения элементов корпуса и другим параметрам. Конструкция корпуса зависит от назначения машины, области ее применения, типов сухопутного и водоходного (у амфибийных машин) движителей и т. д.
Корпуса могут быть открытыми и закрытыми. У открытых корпусов профиль поперечного сечения открытый (корытообразный), у закрытых — замкнутый. По конструктивной схеме различают корпуса с несущей рамой и несущие.
Корпуса с несущей рамой применяются на колесных машинах, обладающих плавучестью. У них все основные нагрузки воспринимаются рамой (к ней крепятся все агрегаты и движители), а сам корпус, обеспечивая машине герметичность, плавучесть и остойчивость, испытывает лишь гидростатические и гидродинамические воздействия при движении по воде. Несущий корпус представляет собой единую пространственную несущую конструкцию, воспринимающую все нагрузки.
Несущие корпуса подразделяются на два типа:
Бескаркасные корпуса применяются там, где сама обшивка обеспечивает необходимую прочность и жесткость. Такие корпуса представляют собой жесткие сварные коробки из толстых стальных листов. Ими оборудуют бронированные, а также некоторые небронированные машины малой и средней грузоподъемности. Весьма перспективный материал для несущих бескаркасных корпусов — трехслойные панели типа «сандвич». Внешние, слои таких панелей образованы из тонких листов достаточно плотного материала (обычно алюминиевые сплавы или стеклопластик); внутренний, более широкий слой выполнен из материала с малой плотностью (пенополиуретан). Корпус, изготовленный из панелей типа «сандвич» и отличающийся малой массой в сочетании с высокой прочностью и жесткостью, способен эффективно уменьшать вибрацию и противостоять коррозии.
Несущий корпус каркасного типа включает в себя пространственный стержневой каркас и тонкую листовую обшивку. Каркас состоит из продольных и поперечных балок, вертикальных и наклонных стоек, раскосов и т.д. Элементы каркаса выполняются, как правило, из тонкостенных гнутых профилей и труб круглого или прямоугольного сечения. Листы обшивки приваривают снаружи к элементам каркаса, обеспечивая корпусу герметичность и необходимое водоизмещение (у амфибийных машин). Для увеличения местной жесткости обшивочные листы могут иметь зиги.
Кузова в качестве несущих систем применяются на легковых автомобилях и автобусах. Их конструкции весьма сложны и многообразны. Кузова, как правило, сочетают в себе пространственный каркас, выполненный из штампованных стальных элементов, и обшивку в виде тонкостенных разнопрофильных оболочек. Соединение элементов кузова осуществляется чаще всего с помощью точечной сварки.
По назначению кузова подразделяют на:
- грузовые
- пассажирские
- грузопассажирские
- специальные (для размещения различного мобильного оборудования)
По характеру воспринимаемых нагрузок различают следующие типы кузовов: несущие (без рамы), полунесущие (они жестко соединены с рамой и воспринимают часть нагрузки, действующей на ТС) и разгруженные (с рамой соединены не жестко, а через упругие прокладки).
В зависимости от типа ТС применительно к кузовам может использоваться и другая классификация. Например, по общей структуре и визуальному восприятию кузова легковых автомобилей могут быть одно-, двух- и трехобъемными.
Металлоконструкции прицепов и полуприцепов имеют сходство с рамами, У прицепов малой и средней грузоподъемности рамы, как правило, плоские. Прицепы, предназначенные для перевозки тяжеловесных грузов (трейлеры), имеют низкую грузовую платформу. Их металлоконструкции чаще всего выполняются пространственными. Полуприцепы имеют рамы глагольного типа (ступенчатые). Это связано с необходимостью понизить уровень грузовой платформы при относительно высоком расположении тягово-сцепного устройства.
Для изготовления рам используют в основном углеродистые и низколегированные стали. Они относительно дешевы и более технологичны в производстве, чем высоколегированные. Кроме того, эти стали легче поддаются гибке и холодной штамповке. Низколегированные стали свариваются хуже, чем углеродистые, и поэтому применяются главным образом в клепаных конструкциях.
Корпусные несущие системы изготавливают из разнообразных материалов, чаще всего из углеродистых сталей. Могут использоваться также легкие сплавы (например, алюминиевые) и пластмассы, которые, уменьшают массу корпуса и повышают его коррозионную стойвдсть.
Для изготовления кузовов легковых автомобилей и автобусов массовых моделей применяются в основном низкоуглеродистые специальные стали. Детали кузова (крылья, арки колес, днище), подверженные сильной коррозии, часто выполняют из оцинкованной стали. В последнее время для изготовления кузовов автомобилей все шире используютря алюминиевые сплавы и пластмассы.
Металлоконструкции прицепов и полуприцепов собирают преимущественно с помощью сварки, что обусловливает выбор материалов для их изготовления. В этом случае чаще всего используют углеродистые стали.