Меню

Гидравлический привод сцепления автомобиля устройство

Гидравлическое сцепление — схема и принцип работы

Гидромуфта, в которой крутящий момент передается гидродинамическим (скоростным) напором жидкости, циркулирующей между ведущими и ведомыми деталями, называется гидравлическим сцеплением.

Гидромуфта на автомобилях в качестве самостоятельного сцепления не применяется, так как не обеспечивает полного выключения (ее «ведет»), что затрудняет переключение передач. В связи с этим при использовании гидромуфты последовательно с ней устанавливается фрикционное сцепление, которое предназначено только для переключения передач. При этом в фрикционном сцеплении устанавливаются более слабые нажимные пружины, что облегчает выключение сцепления.

На схеме 1 показана гидромуфта, с которой последовательно включено однодисковое фрикционное сухое сцепление. Ведущее лопастное насосное колесо 1 вместе с корпусом гидромуфты закреплено на коленчатом валу двигателя, а ведомое лопастное турбинное колесо 2 соединено с ведущим диском 3 фрикционного сцепления. Оба колеса находятся в корпусе гидромуфты, объем которого на 80…85 % заполнен рабочей жидкостью – турбинным маслом малой вязкости. Лопасти колес расположены радиально.

Схема 1 – Гидравлическое сцепление

1 – насосное колесо; 2 – турбинное колесо; 3 – ведущий диск

Принцип работы

При вращении коленчатого вала двигателя вращается насосное колесо 1. Жидкость с его лопастей под действием центробежной силы переносится на лопасти турбинного колеса (показано стрелками) и приводит его и ведущий диск 3 фрикционного сцепления во вращение. Таким образом, передача крутящего момента происходит посредством жидкости, и длительное буксование не вызывает усиленного нагрева и повышенного изнашивания деталей гидромуфты.

Достоинства и недостатки

Гидромуфта обеспечивает плавную передачу крутящего момента, снижает динамические нагрузки в трансмиссии и поглощает крутильные колебания, повышает устойчивость работы двигателя при малой скорости движения, облегчает управление автомобилем и повышает его проходимость.

Однако гидромуфта имеет низкий КПД и ухудшает топливную экономичность автомобиля. При установке гидромуфты потери максимальной мощности двигателя составляют до 3 % из-за нагрева рабочей жидкости. Кроме того, применение гидромуфты приводит к увеличению сложности, металлоемкости и стоимости трансмиссии.

Гидравлический привод сцепления

Сцепление является важнейшим элементом любого автомобиля, принимающим на себя многочисленные нагрузки и удары, возникающие в процессе езды. Поэтому особую важность имеет его устройство, функциональные особенности и разновидности. Сцепление может иметь механический и гидравлический привод.

Сцепление с гидравлическим приводом

Впервые устройство появилось в 1905 году, предназначалось для применения в морских судах, но спустя какое-то время один инженер занялся его установкой на авто.

Принцип базируется на обеспечении сцепления двигателя и коробки передач, в ходе чего происходит поглощение вибраций, и автомобиль начинает плавное движение.

Рассмотрим устройство и принцип функционирования системы.

Гидравлический привод

Гидравлический привод сцепления обладает более сложной структурой. Несмотря на сложную систему, устройство в работе является более совершенным. Главный и рабочий цилиндр сцепления автомобиля имеют одинаковый принцип дефектовки деталей, поэтому они описываются по отдельности редко.

Особенности

Гидропривод сцепления для автомобиля имеет несколько конструктивных особенностей:

  • устройство предполагает отсутствие троса, подвергаемого износу и поломкам, поэтому можно экономить на затратах;
  • соединение осуществляется штоком, обладающим регулируемой конструкцией и сложным механизмом;
  • цилиндр располагается традиционно в области корпуса картера;
  • главный цилиндр сцепления и бачок жидкости совместимы по своему расположению.

Главный и рабочий цилиндр имеют соединение с помощью магистрали, где расположена рабочая жидкость. Принцип работы имеет сходство с действием гидравлической системы тормозов, которое базируется традиционно на особенностях свойств несжимаемой жидкости.

Поломки

Рабочий цилиндр автомобиля подвергается поломкам, поэтому тем, кто хочет сэкономить время на ремонте, стоит осуществить его замену новым элементом. Цилиндр продается, как и шайбы для уплотнения, в комплекте. Устанавливаются компоненты под гидравлический шланг, в области болта крепления. Если их нет в наборе, стоит приобрести отдельно и установить на автомобиль.

Полностью заменять цилиндр автомобиля нецелесообразно с экономической точки зрения, достаточно поменять специальные резиновые манжеты, которые продаются в ремонтных комплектах. Отдавать машину стоит в ремонт только в проверенные сервисы, чтобы достигнуть оптимального результата.

Как работает

От педали сцепления к его механизму передается усилие с помощью жидкости, находящейся в гидроцилиндрах привода, соединяющих важнейшие элементы. Большой диск находится на острой стороне вала и кожуха, выполненного из стали. Последний закрепляется в области маховика. Внутри него есть пружина со специальными выжимными рычажками. На оси конструкции располагается специальная управляющая педаль, которая приподнимается к кронштейну на кузове. Она опускается при выключении сцепления и переключении передачи.

Читайте также:  Портативное пуско зарядное устройство для автомобиля чудо техники

Особенности выбора минерального масла. Можно ли использовать его в гидроприводе сцепления

Минеральное масло должно приспособиться к тяжелым условиям функционирования в передачах, ведь температурный режим может достигать +150 С. К маслам, соответственно, предъявлены жесткие требования, поскольку помимо выполнения функции смазки трущихся поверхностей они играют роль рабочего тела.

Так, минеральное масло должно обладать достаточным количеством эксплуатационных качеств:

  • высокая стабильность в течение полного эксплуатационного срока;
  • минеральное масло должно иметь интенсивную аэрацию;
  • высокие показатели образования пены;
  • минеральное масло должно характеризоваться присутствием в составе противокоррозионных присадок, обеспечивающих снижение действия коррозии;
  • оптимальный уровень вязкости и плотности, который должно иметь минеральное масло. Если уровень и КПД высокие, показатель вязкости – минимальный, если нужно обеспечить в области поверхностей трения пленку – требуется высокий показатель вязкости;
  • отсутствие качеств агрессивности в отношении деталей, используемых для уплотнения и по сравнению с другими элементами, работающими в системе.

Нередко на практике применяется специальное минеральное масло, которое изготовлено на базе веретенных компонентов с низким уровнем вязкости и присутствием присадок.

Однако стоит обратить особое внимание: в современных автомобилях минеральное масло в гидроприводе сцепления не используется, так как оно может разрушить резиновые элементы конструкции. Для этого применяют специальную тормозную жидкость DOT4. Также недопустимо смешивание тормозных жидкостей разных типов.

Заключение

Таким образом, устройство гидравлического привода автомобиля является сложным, но, несмотря на это, имеет массу преимуществ и особенностей функционирования. Минеральное масло не стоит использовать в гидравлическом приводе автомобиля, чтобы не возникло серьезных проблем с его эксплуатацией и ремонтом.

Устройство и принцип работы привода сцепления

Важной составляющей автомобиля, оснащенного механической коробкой передач, является сцепление. Оно состоит непосредственно из муфты (корзины) сцепления и привода. Остановимся более подробно на таком элементе, как привод сцепления, который играет важную роль в общем узле сцепления. Именно при его неисправности муфта теряет свою функциональность. Разберем устройство привода, его виды, а также преимущества и недостатки каждого.

Привод сцепления и его виды

Привод предназначен для дистанционного управления сцеплением непосредственно водителем из салона. Нажатие на педаль сцепления напрямую воздействует на нажимной диск.

Известны следующие виды привода:

  • механический;
  • гидравлический;
  • электрогидравлический;
  • пневмогидравлический.

Наибольшее распространение получили первые два вида. На грузовиках и автобусах используется пневмогидравлический привод. Электрогидравлический устанавливают в машинах с роботизированной коробкой передач.

В некоторых автомобилях для облегчения управления применяется пневматический или вакуумный усилитель привода.

Механический привод

Механический или тросовый привод отличается простой конструкцией и невысокой ценой. Он неприхотлив в обслуживании и состоит из минимального количества элементов. Механический привод устанавливается в легковых и малотоннажных грузовых автомобилях.

Механический привод сцепления

К элементам механического привода относятся:

  • трос сцепления;
  • педаль сцепления;
  • вилка выключения сцепления;
  • выжимной подшипник;
  • механизм регулировки.

Трос сцепления, заключенный в оболочку, является основным элементом привода. Трос сцепления крепится к вилке, а также к педали, находящейся в салоне автомобиля. В момент выжимания педали водителем действие через трос передается на вилку и выжимной подшипник. В результате происходит разъединение маховика двигателя с трансмиссией и, соответственно, выключение сцепления.

В соединении троса и рычажного привода предусмотрен регулировочный механизм, обеспечивающий свободный ход педали сцепления.

Ход педали сцепления представляет собой свободное перемещение до момента срабатывания привода. Расстояние, пройденное педалью без особого усилия водителя при нажатии, и есть свободный ход.

Если переключение передач сопровождается шумом, а в начале движения наблюдаются небольшие рывки автомобиля, то необходима регулировка хода педали.

Зазор в сцеплении должен находиться в пределах 35-50 мм свободного хода педали. Нормативы этих показателей указаны в технической документации автомобиля. Регулировка хода педали осуществляется путем изменения длины тяги с помощью регулировочной гайки.

В грузовых автомобилях используется не тросовый, а рычажный механический привод.

К плюсам механического привода относятся:

  • простота устройства;
  • невысокая стоимость;
  • надежность в эксплуатации.

Главным минусом считается более низкий КПД по сравнению с гидроприводом.

Читайте также:  Газ 3110 двигатель 406 вид

Гидравлический привод сцепления

Гидропривод имеет более сложную конструкцию. К его элементам, помимо выжимного подшипника, вилки и педали, относится также гидравлическая магистраль, которая заменяет трос сцепления.

Схема гидравлического сцепления

По сути эта магистраль аналогична гидроприводу тормозной системы и состоит из следующих элементов:

  • главный цилиндр сцепления;
  • рабочий цилиндр сцепления;
  • бачок и трубопровод с тормозной жидкостью.

Устройство главного цилиндра сцепления напоминает устройство главного тормозного цилиндра. Главный цилиндр сцепления состоит из поршня с толкателем, расположенных одном в корпусе. Также к его элементам относятся резервуар для жидкости и уплотнительные манжеты.

Рабочий цилиндр сцепления, имеющий схожую с главным цилиндром конструкцию, дополнительно оснащен клапаном для удаления воздуха из системы.

Механизм действия гидропривода такой же, как и у механического, только усилие передается с помощью находящейся в трубопроводе жидкости, а не через трос.

Во время нажатия водителем на педаль усилие через шток передается на главный цилиндр сцепления. Затем за счет несжимаемого свойства жидкости в действие приводятся рабочий цилиндр сцепления и рычаг привода выжимного подшипника.

В качестве плюсов гидропривода можно выделить следующие его особенности:

  • гидравлическое сцепление позволяет передавать усилие на значительное расстояние с высоким КПД;
  • сопротивление перетеканию жидкости в элементах гидропривода способствует плавному включению сцепления.

Главный минус гидропривода – более сложный ремонт по сравнению с механическим. Течь рабочей жидкости и попадание в систему гидропривода воздуха – вот, пожалуй, наиболее распространенные поломки, которыми могут «похвастаться» главный и рабочий цилиндры сцепления.

Гидропривод применяется в легковых автомобилях, а также на грузовых автомобилях с опрокидывающейся кабиной.

Нюансы эксплуатации сцепления

Зачастую водители склонны связывать неравномерность и рывки при движении автомобиля с неисправностями сцепления. Эта логика в большинстве случаев ошибочна.

Например, автомобиль при переключении передач с первой на вторую, резко сбрасывает обороты. Здесь виновато не само сцепление, а датчик положения педали сцепления. Находится он за самой педалью сцепления. Неисправности датчика устраняются путем несложного ремонта, после которого сцепление будет вновь работать плавно и без рывков.

Другая ситуация: при переключении передач автомобиль немного дергается, а при трогании с места может заглохнуть. В чем может быть причина? Чаще всего в этом виноват клапан задержки сцепления. Этот клапан обеспечивает определенную скорость, при которой может схватываться маховик, независимо от того, насколько быстро была «брошена» педаль сцепления. Для начинающих водителей эта функция необходима, т.к. клапан задержки сцепления предотвращает чрезмерный износ поверхности диска сцепления.

Устройство сцепления автомобиля. Как работает?

Трансмиссия служит для передачи крутящего момента от двигателя на ведущие колеса и для изменения величины крутящего момента и его направления. Расскажем про устройство сцепления автомобиля — из чего состоит и как работает .

Сцепление автомобиля предназначено для передачи крутящего момента от маховика коленчатого вала двигателя к первичному валу коробки передач. Сцепление позволяет водителю кратковременно прерывать передачу крутящего момента, как бы отделять двигатель от трансмиссии, а затем плавно их соединять. Сцепление состоит из привода и механизма сцепления.

ПРИВОД ВЫКЛЮЧЕНИЯ СЦЕПЛЕНИЯ.

Дальнейшее изучение автомобиля невозможно без понимания термина — привод. Попробуем с ним разобраться.

Когда в автомобиле надо передать усилие, допустим от водителя к некому механизму, то могут возникнуть проблемы. Для того чтобы автомобиль исправно работал, а водитель находился на своем месте, существует привод механизмов.

Представьте ситуацию, когда вам необходимо постоянно что-то закрывать и открывать, а сами вы передвигаться не можете. Для передачи усилия на расстоянии по «открыванию» и «закрыванию» двери, вам придется применить палку или дистанционное управление. Пусть это будет палка, привязанная веревками одним концом к вашей руке, а другим к ручке двери. В этом случае, палка с веревками будут являться «приводом», который передаст усилие на расстоянии.

В автомобиле каждый механизм имеет свой привод, посредством которого он приводится в действие. Привод может состоять из большого количества отдельных узлов и деталей, может быть механическим, гидравлическим.

Схема гидравлического привода выключения сцепления и механизма сцепления
1 — коленчатый вал; 2 — маховик; 3 — ведомый диск; 4 — нажимной диск; 5 — кожух сцепления; 6 — нажимные пружины; 7 — отжимные рычаги; 8 — нажимной подшипник; 9 — вилка выключения сцепления; 10 — рабочий цилиндр; 11 — трубопровод; 12 — главный цилиндр; 13 — педаль сцепления; 14 — картер сцепления; 15 — шестерня первичного вала; 16 — картер коробки передач; 17 — первичный вал коробки передач.

Читайте также:  Расход масла для тойота королла

Привод выключения сцепления (гидравлического типа) состоит из :

  • педали,
  • главного цилиндра,
  • рабочего цилиндра,
  • вилки выключения сцепления,
  • нажимного подшипника,
  • трубопроводов.

При нажатии на педаль сцепления, усилие ноги водителя, через шток и поршень, передается жидкости, которая передает давление от поршня главного цилиндра на поршень рабочего. Далее шток рабочего цилиндра перемещает вилку выключения сцепления и нажимной подшипник, который передает усилие на механизм сцепления. Когда водитель отпустит педаль, то под воздействием возвратных пружин все детали привода займут исходные позиции.
В гидравлическом приводе сцепления применяется тормозная жидкость. Перед тем как заливать ее в бачок привода, стоит прочитать, что написано на этикетке. А разрешается ли ее смешивать с жидкостью, которая уже залита в гидроприводе сцепления автомобиля? Как правило, ответ бывает положительным, но существуют жидкости, которые не подлежат смешиванию.

На передне приводных автомобилях используется механический привод, где педаль сцепления связана с вилкой выключения с помощью металлического троса.

МЕХАНИЗМ СЦЕПЛЕНИЯ.

Механизм сцепления представляет собой устройство, в котором происходит передача крутящего момента за счет работы сил трения. Механизм сцепления позволяет кратковременно разъединять двигатель и коробку передач, а затем плавно их соединять. Элементы механизма заключены в картер сцепления, который крепится к картеру двигателя.

Механизм сцепления состоит из :

  • картера и кожуха,
  • ведущего диска (которым является маховик двигателя),
  • нажимного диска с пружинами,
  • ведомого диска с износостойкими накладками.

Ведомый диск постоянно прижат к маховику нажимным диском под воздействием сильных пружин. За счет огромных сил трения между маховиком, ведомым и нажимным дисками, все это вместе вращается при работе двигателя. Но только тогда, когда водитель не трогает педаль сцепления, независимо от того едет ли или стоит на месте автомобиль.

Для начала движения машины, необходимо прижать ведомый диск, связанный с ведущими колесами к вращающемуся маховику, то есть — включить сцепление. И это сложная задача, так как угловая скорость вращения маховика составляет 20 — 25 оборотов в секунду, а скорость вращения ведущих колес – ноль.

Как это сделать? Для этого надо всегда правильно отпускать педаль сцепления, только в три этапа.

Как это сделать? Для этого надо всегда правильно отпускать педаль сцепления, только в три этапа.

На первом этапе работы по включению сцепления — приотпускаем педаль, т.е. даем возможность пружинам нажимного диска подвести ведомый диск к маховику до их легкого соприкосновения. За счет сил трения диск, проскальзывая некоторое время относительно маховика, тоже начнет вращаться, а автомобиль потихоньку ползти.

На втором этапе – удерживаем ведомый диск от какого-либо перемещения, т.е. на две — три секунды удерживаем педаль сцепления в средней позиции для того, чтобы скорость вращения маховика и диска уравнялись. Машина при этом увеличивает скорость движения.

На третьем этапе — маховик вместе с нажимным и ведомым дисками уже вращаются вместе без проскальзывания и с одинаковой скоростью, 100%-но передавая крутящий момент к коробке передач и далее на ведущие колеса автомобиля. Это соответствует состоянию механизма сцепления – включено, автомобиль едет. Теперь остается только полностью отпустить педаль сцепления и убрать с нее ногу.

Если при начале движения педаль сцепления резко бросить, то автомобиль «прыгнет» вперед, а двигатель заглохнет.

Для выключения сцепления водитель нажимает на педаль, при этом нажимной диск отходит от маховика и освобождает ведомый диск, прерывая передачу крутящего момента от двигателя к коробке передач. Нажимать на педаль сцепления следует достаточно быстрым, но не резким, спокойным движением до конца хода педали.

Действия водителя по выключению и включению сцепления в течение поездки повторяются много раз. Однако, освоив работу с педалью сцепления в три этапа , позже это войдет в привычку, которая обеспечит плавность хода автомобиля и комфортность пассажирам.

Adblock
detector