Меню

Двигатель дид 2та схема

Двигатель дид 2та схема

Иногда радиолюбителям необходимо дистанционно вращать конденсатор переменной емкости, вариометр, потенциометр, магнитную антенну, малогабаритную направленную антенну. Для этого можно использовать электродвигатель типа ДИД-0,5 совместно с редуктором. Обычно со списанной аппаратуры снимают электродвигатели ДИД-0,5 вместе с редукторами, поскольку они выполнены одним блоком. В зависимости от используемого редуктора скорость вращения вала различная. Есть редукторы, обеспечивающие скорость вращения 1 оборот в минуту, а есть и такие, что имеют 1 оборотза 15 минут. Чтобы изменить передаточное число редукции, некоторые редукторы можно доработать, оставив только часть шестеренок, и к ним подсоединить двигатель.

Электродвигатель ДИД-0,5 — это двухфазный индукционный двигатель (ДИД), рассчитанный на эксплуатацию в условиях повышенной жесткости. Согласно данным из Интернета [1], напряжение питания возбуждающей обмотки электродвигателя — 36 В, обмотки управления — 30 В (со сдвигом фаз 90° относительно друг друга). Частота питающего напряжения — 400 Гц. Максимальная мощность на валу, развиваемая двигателем — 0,5 Вт. Скорость вращения на холостом ходу — 14000 об/мин.

ДИД-0,5 использовались в аппаратуре электросвязи, радиотехнике, авиационных приборах и т.п. Для обеспечения работы в аппаратуре обычно используются генераторы на 400 Гц большой мощности, но они довольно громоздкие.

Предлагаю свой генератор для питания одного ДИД-0,5, выполненный по схеме на рис.1. За основу взят генератор, описанный в [2]. Устройство состоит из генераторного каскада на транзисторе VT1, включенного по схеме с общей базой. Вторичная обмотка L1 заводится в цепь эмиттера VT1, и таким образом осуществляется положительная обратная связь (ПОС). За счет резисторов в цепи эмиттера вводится отрицательная обратная связь (ООС). Глубина ООС регулируется подстроенным резистором R5.

Синусоидальный сигнал с частотой 400 Гц, снятый с обмоток II и II! катушки L1, через разделительные конденсаторы С4 и С5 поступает на выходной каскад, собранный по классической схеме на транзисторах VT2 и VT3, работающих в режиме АВ. Выходной трансформатор Т1 имеет две обмотки (для подбора оптимального напряжения питания сделаны отводы), которые обеспечивают нужные напряжения питания ДИД-0,5. Возбуждающая обмотка включена через фазосдвигаю-щий конденсатор С7.

Если возникнет необходимость понизить напряжение питания двигателя, это можно сделать за счет снижения питающего напряжения задающего генератора заменой стабилитрона VD1 Д815Ж (18 В) на Д815Е (15 В) или на Д815Д (12 В). При этом сопротивления резисторов R3 и R4 необходимо увеличить до 300 Ом (или до 360 Ом).

При включении SA1 поступает питание на генератор, и он вырабатывает синусоидальный сигнал с частотой 400 Гц. Если при включении светится светодиод HL2 — это означает, что диск (лимб) находится в одном из крайних положений и возбуждающая обмотка обесточена кнопкой SB1. При этом необходимо переключить переключатель SA2, т.е. изменить направление вращения ДИД-0,5, нажать кнопку SB1 и удерживать ее до тех пор, пока не погаснет светодиод HL2. Если светодиод HL2 не светится, то питание на возбуждающую обмотку поступает через концевую кнопку SB1. Когда нагрузка подключена к диску через фрикционную передачу, снимать питание с возбуждающей обмотки не обязательно. Для остановки электродвигателя необходимо обесточить генератор с помощью выключателя SA1.

Транзисторы VT2, VT3 установлены на радиаторах площадью 50 см 2 , стабилитрон VD1 — на радиаторе площадью 20 см 2 . Катушка L1 намотана проводом ПЭВ-2 0,1 мм на броневом ферритовом сердечнике БЗО (u=2000), который собирается с зазором (кольцом бумаги) толщиной 0,2 мм. Обмотка I содержит 1200 витков, обмотка II — 310 витков, обмотка III — 310 витков. Трансформатор Т1 выполнен на сердечнике Ш25×30 проводом ПЭВ-2. Обмотка I содержит 270+270 витков 00,43 мм (с отводом от средины), обмотка II — 900 витков 00,31 мм (отвод от 600, 700, 800 витка, считая от нижнего по схеме конца), обмотка III — 750 витков 0,25 мм (отвод от 550, 650 витка, считая от нижнего конца). Распайка обмоток ДИД-0,5 приведена на рис.2.

Читайте также:  Лачетти начал жрать масло

Для питания электродвигателя ДИД-0,5 необходимо шесть проводников и один для питания светоди-ода HL2. Можно применить кабель типа UTP (витая пара) на пять пар, т.е. 10 проводников или телефонный кабель типа ТПП. Допустимая длина кабеля — до 100 м.

2. Д.С.Бабын. Простой генератор звуковых частот. — Радиомир, 2013, №6, С.38.

Двигатель дид 2та схема

Иногда радиолюбителям необходимо дистанционно вращать конденсатор переменной емкости, вариометр, потенциометр, магнитную антенну, малогабаритную направленную антенну. Для этого можно использовать электродвигатель типа ДИД-0,5 совместно с редуктором. Обычно со списанной аппаратуры снимают электродвигатели ДИД-0,5 вместе с редукторами, поскольку они выполнены одним блоком. В зависимости от используемого редуктора скорость вращения вала различная. Есть редукторы, обеспечивающие скорость вращения 1 оборот в минуту, а есть и такие, что имеют 1 оборотза 15 минут. Чтобы изменить передаточное число редукции, некоторые редукторы можно доработать, оставив только часть шестеренок, и к ним подсоединить двигатель.

Электродвигатель ДИД-0,5 — это двухфазный индукционный двигатель (ДИД), рассчитанный на эксплуатацию в условиях повышенной жесткости. Согласно данным из Интернета [1], напряжение питания возбуждающей обмотки электродвигателя — 36 В, обмотки управления — 30 В (со сдвигом фаз 90° относительно друг друга). Частота питающего напряжения — 400 Гц. Максимальная мощность на валу, развиваемая двигателем — 0,5 Вт. Скорость вращения на холостом ходу — 14000 об/мин.

ДИД-0,5 использовались в аппаратуре электросвязи, радиотехнике, авиационных приборах и т.п. Для обеспечения работы в аппаратуре обычно используются генераторы на 400 Гц большой мощности, но они довольно громоздкие.

Предлагаю свой генератор для питания одного ДИД-0,5, выполненный по схеме на рис.1. За основу взят генератор, описанный в [2]. Устройство состоит из генераторного каскада на транзисторе VT1, включенного по схеме с общей базой. Вторичная обмотка L1 заводится в цепь эмиттера VT1, и таким образом осуществляется положительная обратная связь (ПОС). За счет резисторов в цепи эмиттера вводится отрицательная обратная связь (ООС). Глубина ООС регулируется подстроенным резистором R5.

Синусоидальный сигнал с частотой 400 Гц, снятый с обмоток II и II! катушки L1, через разделительные конденсаторы С4 и С5 поступает на выходной каскад, собранный по классической схеме на транзисторах VT2 и VT3, работающих в режиме АВ. Выходной трансформатор Т1 имеет две обмотки (для подбора оптимального напряжения питания сделаны отводы), которые обеспечивают нужные напряжения питания ДИД-0,5. Возбуждающая обмотка включена через фазосдвигаю-щий конденсатор С7.

Если возникнет необходимость понизить напряжение питания двигателя, это можно сделать за счет снижения питающего напряжения задающего генератора заменой стабилитрона VD1 Д815Ж (18 В) на Д815Е (15 В) или на Д815Д (12 В). При этом сопротивления резисторов R3 и R4 необходимо увеличить до 300 Ом (или до 360 Ом).

При включении SA1 поступает питание на генератор, и он вырабатывает синусоидальный сигнал с частотой 400 Гц. Если при включении светится светодиод HL2 — это означает, что диск (лимб) находится в одном из крайних положений и возбуждающая обмотка обесточена кнопкой SB1. При этом необходимо переключить переключатель SA2, т.е. изменить направление вращения ДИД-0,5, нажать кнопку SB1 и удерживать ее до тех пор, пока не погаснет светодиод HL2. Если светодиод HL2 не светится, то питание на возбуждающую обмотку поступает через концевую кнопку SB1. Когда нагрузка подключена к диску через фрикционную передачу, снимать питание с возбуждающей обмотки не обязательно. Для остановки электродвигателя необходимо обесточить генератор с помощью выключателя SA1.

Читайте также:  Инструмент для ремонта панелей автомобиле

Транзисторы VT2, VT3 установлены на радиаторах площадью 50 см 2 , стабилитрон VD1 — на радиаторе площадью 20 см 2 . Катушка L1 намотана проводом ПЭВ-2 0,1 мм на броневом ферритовом сердечнике БЗО (u=2000), который собирается с зазором (кольцом бумаги) толщиной 0,2 мм. Обмотка I содержит 1200 витков, обмотка II — 310 витков, обмотка III — 310 витков. Трансформатор Т1 выполнен на сердечнике Ш25×30 проводом ПЭВ-2. Обмотка I содержит 270+270 витков 00,43 мм (с отводом от средины), обмотка II — 900 витков 00,31 мм (отвод от 600, 700, 800 витка, считая от нижнего по схеме конца), обмотка III — 750 витков 0,25 мм (отвод от 550, 650 витка, считая от нижнего конца). Распайка обмоток ДИД-0,5 приведена на рис.2.

Для питания электродвигателя ДИД-0,5 необходимо шесть проводников и один для питания светоди-ода HL2. Можно применить кабель типа UTP (витая пара) на пять пар, т.е. 10 проводников или телефонный кабель типа ТПП. Допустимая длина кабеля — до 100 м.

2. Д.С.Бабын. Простой генератор звуковых частот. — Радиомир, 2013, №6, С.38.

Электродвигатель асинхронный ДИД-2ТВ

ДИД-2ТВ

ДИД-2ТВ асинхронный индукционный двухфазный двигатель малой мощности для систем автоматики.
Двигатели серии ДИД имеют полый немагнитный ротор.
Сдвиг фаз напряжения обмотки управления относительно напряжения обмотки возбуждения, равный 90°, осуществляется с помощью специальных схем независимо от нагрузки двигателя.
Соединение с нагрузкой осуществляется с помощью трибки ДИД-0.1, ДИД-0.5, ДИД-0.6 либо муфты или шестерни.
Не допускается непосредственное соединение вала с нагрузкой, создающей осевое усилие.
Крепление двигателей — фланцевое.
Режим работы — продолжительный (S1).
Напряжение питания обмоток возбуждения и управления 30 В, частота напряжения питания 400 Гц, двигателя ДИД-ТЧ — 1000 Гц.

Расшифровка условного обозначения:
ДИД-2ТВ
ДИД — двигатель индукционный двухфазный;
2 — число — максимальная мощность, Вт;
ТВ — ТА — нагревостойкие, ТВ — нагревовлагостойкие, ТЧ — нагревостойкие на частоту напряжения питания 1000 Гц.

Технические характеристики электродвигателя ДИД-2ТВ:
• Номинальная мощность, Вт . 2
• Частота вращения, об/мин . 18000
• Потребляемый ток, А . 0,4
• Коэффициент полезного действия, % . 20
• Масса, кг . 0,165

Условия эксплуатации электродвигателя :
• Вибрационные нагрузки:
— диапазон частот, Гц . 10-1000
— ускорение, м/с2 . 75
• Ударные нагрузки, м/с2 . 350
• Температура окружающей среды, °С . -60. +100
• Относительная влажность воздуха при температуре 30°С, % . 98
• Гарантийная наработка, ч . 2200

Преобразователь частоты для асинхронного – схема

Асинхронный двигатель (машина) – это электрический двигатель, частота вращения которого не совпадает с частотой тока (ЭДС), прикладываемого к статору.

Рис. 1. Асинхронный двигатель

К преимуществам таких двигателей можно отнести их низкую стоимость, простоту изготовления и эксплуатации, а также возможность прямого включения (без регулирования или преобразования питающего тока). Есть у них и недостатки: высокие требования к пусковому току, сложная регулировка оборотов, низкий коэффициент мощности и др.

Здесь стоит отметить, что асинхронные двигатели рассчитаны на работу только с трехфазным напряжением, только в этом случае не требуются никакие преобразователи.

Однако, в быту часто требуется запитать асинхронный двигатель от обычной сети переменного тока с одной фазой, и именно здесь кроется основная проблема.

Необходимость использования частотного преобразователя

Есть несколько способов управления асинхронным двигателем, и один из них – регулировка частоты.

Изменяя частоту питающего тока, вы меняете частоту вращения двигателя, можете запустить его или наоборот – остановить.

Читайте также:  Адаптер диагностики автомобиля связь с телефоном

В качестве преобразователя напряжения наибольшее распространение нашли инверторные схемы. Они обеспечивают широкий диапазон регулировки частот, обладают высоким КПД и другими отличными техническими характеристиками.

Схему работы инверторов можно изобразить следующим образом.

Рис. 2. Схема работы инверторов

Однофазное переменное напряжение преобразуется в постоянное, подается в блок с импульсным инвертором, который формирует три независимых переменных напряжения (одинакового уровня, но со смещенной фазой) — ключа.

Схема инверторного преобразователя для асинхронного двигателя

Преобразователи можно приобрести в готовом виде, а можно изготовить своими руками.
Сложность проектирования и создания таких схем заключается в логике их работы. В настоящее время с приходом программируемых контроллеров Arduino и т.п. имеется возможность создавать сложные схемы с широким диапазоном регулировки частот всех трех питающих напряжений. Однако, для начала рассмотрим простые варианты.

Двигатель ДИД-0.5ТА (напряжение питания около 27 В, частота вращения – до 400 Гц) имеет небольшую мощность и широко применяется в системах автоматики. Чтобы привести его в движение и отрегулировать частоту вращения вала можно использовать следующую схему.

Рис. 3. Схема двигателя

По сути она представляет собой три разделенных генератора частоты (ключа) на базе логических элементов.

За регулировку отвечает резистор R2. Такая схема не подойдет для запуска асинхронных двигателей, работающих от трехфазного напряжения 380 В.

Для этих целей можно использовать адаптированную схему.

Рис. 4. Адаптированная схема

Здесь блоки выходных ключей A2 и А3 изображены схематично, так как полностью дублируют блок А1.

Программировать здесь ничего не нужно.

Более сложные реализации

Многие производители предлагают специальные контроллеры, на базе которых управление асинхронными двигателями существенно упрощается.

Один из таких вариантов – контроллер MC3PHAC.

Рекомендуемая производителем схема подключения.

Рис. 5. Схема подключения

Реализация платы частотного преобразователя может быть, например, такой.

Рис. 6. Реализация платы частотного преобразователя

Обмен данными по последовательному интерфейсу RS232 с персональным компьютером не обязателен. Схема может работать автономно.

Управляющие сигналы и процедуры инициализации можно уточнить в даташите производителя.

Еще один вариант с готовой прошивкой для микроконтроллера

Схема использовалась для питания трехфазного двигателя на пилораме (наверное, самый популярный способ использования трехфазных двигателей).

Рис. 7. Схема для питания трехфазного двигателя

Блок питания к ней.

Рис. 8. Схема блока питания

Вариант печатной платы.

Рис. 9. Печатная плата

Частота может регулироваться в диапазоне 2,5-50 Гц с шагом 1,25. ШИМ – 1700 – 3300 Гц. Мощность двигателя – не более 4 кВт.

После одиночного короткого нажатия на кнопку «пуск» подается пусковая частота – 10 Гц. А удерживание инициирует дальнейший разгон до 50 Гц (в течении приблизительно 2 секунд).

Прошивка для контроллера PIC16F628(A) здесь.

Мнения читателей
  • Александрррррр / 27.10.2020 — 17:14

Здравствуйте! Буду очень признателен, если кто-нибудь подскажет, есть ли ссылка на скачивание данной схемы в хорошем качестве? (На PIC — контроллере)

Андрей Рославцев / 21.10.2020 — 20:42

Добрый вечер. Пришлите. пожалуйста схему на электронный адрес nata.roslavceva@mail.ru т.к. плохо видно значения элементов на схеме. Заранее спасибо.

Дмитрий / 16.10.2019 — 18:34

Здравствуйте,а можно какой-нибудь список элементов и т.д?Просто на фотографии плохо видно.

admin / 07.10.2019 — 16:05

admin / 07.10.2019 — 15:12

Да, есть проблема, проверим, поправим, на почту архив вышлем. Спасибо.

Сергей / 07.10.2019 — 14:21

Если возможно прошу указать другой адрес прошивки или выслать файл в по личку. При обращении к ссылке указанной Вами выше — выдается сообщение о Зараженности данного ресурса вирусо.По содержанию статьи- ОЧЕНЬ ПОДРОБНО И СОДЕРЖАТЕЛЬНО. Вам РЕСПЕКТ.Сергей.vitrilo@mail.ru

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Adblock
detector