Меню

Что вращает колесо автомобиля

Колесо и дорога. Силы действующие на колесо

Как будто все просто: вращение вала автомобильного двигателя, переданное через механизмы силовой передачи, заставляет вращаться колеса, колеса катятся по дороге; оси вращения при перекатывании колес перемещаются вперед; оси так или иначе связаны с рамой и кузовом автомобиля; значит, вместе с осями перемещается и кузов, и автомобиль. Однако такого описания недостаточно. Необходимо знать, какие силы действуют на колесо. Вот они:

  • вращающий момент Мк, заставляющий колесо вращаться и создающий тяговую силу Рк
  • сила тяжести, соответствующая нагрузке на колесо Gk
  • вертикальная реакция дороги Z и горизонтальная X, действующая в направлении движения (т.е. обратном действию силы Рк).

Тяговая сила Рк (в кг) равна подводимому к колесам вращающему моменту Мк (в кгм), деленному на радиус качения колеса (в м):

Момент Мк зависит от крутящего момента двигателя Ме, передаточных чисел в системе силовой передачи и коэффициента полезного действия n силовой передачи, который для обычных автомобилей равен 0,9. Чем больше передаточные числа в коробке передач и в заднем мосту, тем больше подводимый к колесам вращающий момент:

где iк — передаточное число в коробке передач;
i0 — передаточное число главной передачи.

Рис. Слева — силы, действующие на колесо. Справа — дорога толкает колесо, ось перемещается вперед и толкает рессоры, рессоры толкают кузов.

Таким образом, тяговая сила на ведущих колесах автомобиля:

Теперь можно высказать два на первый взгляд неожиданных положения:

  1. Движение колеса происходит под действием силы (реакции) X, т. е. дорога толкает автомобиль. Выше был приведен пример действия силы прыгуна на площадку и силы противодействия площадки. Точно так же и ведущее колесо автомобиля отталкивает от себя назад дорогу с силой Рк, а дорога противодействует этому силой (реакцией) X. Реакция X толкает вперед колесо, а оно через ось и подвеску толкает вперед весь автомобиль.
  2. В каждое отдельно взятое мгновение ближайшие к дороге точки колеса неподвижны, не перемещаются относительно поверхности дороги. Более того, если бы они перемещались, автомобиль не двигался бы, а колесо скользило бы по поверхности дороги. Происходило бы то, что называется на языке автомобилистов буксованием колеса.

Чтобы точки контакта колеса с дорогой были неподвижными, требуется хорошее сцепление шины с поверхностью дороги.

Сцепление шины с дорогой оценивают так называемым коэффициентом сцепления Ф («фи»).

Рис. Величина коэффициента сцепления зависит от состояния поверхности дороги.

Коэффициент сцепления равен отношению наибольшей величины реакции X (при проскальзывании, буксовании колеса) к величине реакции Z:

Величина коэффициента сцепления Ф колеблется в пределах 0,5—0,8 для сухих твердых дорог и 0,15—0,4 для обледенелых или мокрых. Из приведенного графика видно, как влияет состояние поверхности асфальтовой дороги на коэффициент сцепления.

Коэффициент сцепления на сухой дороге лишь незначительно изменяется в зависимости от изменений нагрузки на колесо, давления в шине и скорости движения, но на мокрой или обледенелой дороге с увеличением скорости происходит резкое уменьшение коэффициента сцепления, так как шина не успевает выдавливать влагу, находящуюся в области контакта шины с дорогой, и остающаяся пленка влаги облегчает скольжение шины.

Необходимое для движения сцепление шины с дорогой связано с нежелательным трением. Но о каком трении может идти речь, если соприкасающиеся точки неподвижны? При внимательном изучении ближайшего к поверхности дороги участка шины видим, что:

  1. шина сжимается, деформируется; происходит местное сжатие, а затем снова расширение шины; сжатие и расширение содержащегося в камере шины воздуха, взаимное перемещение частиц резины и частиц воздуха вызывает трение между ними;
  2. к точке контакта шины с дорогой все время подходят сжатые элементы шины, а от точки отрыва шины от дороги отходят, наоборот, растянутые; так как резина эластична и прочна, шина не разрывается, а только сжимается и растягивается в области контакта ее с дорогой, поэтому происходит некоторое скольжение отдельных частиц шины по поверхности дороги и, как следствие, трение;
  3. в углублениях поверхности дороги и рисунка протектора находится воздух; набегая на дорогу, участки протектора сплющиваются, резина заполняет углубления, выжимает из них воздух и как бы присасывается к поверхности дороги, и на отрыв шины от дороги требуется затрата дополнительной силы.

Рис. Работа колеса вызывает деформацию (изменение формы) шины.

Нетрудно сделать вывод, что описанные явления трения или сопротивления качению должны усиливаться при понижении давления в шине (так как при этом увеличиваются ее деформации) и при возрастании окружной скорости шины, а также при неровной или шероховатой поверхности дороги и при наличии заметных выступов и углублений в рисунке протектора шины.

Читайте также:  Диагностика кислородных датчиков автомобиля

Это на твердой дороге. А мягкую или не очень твердую дорогу, даже размягченный жарой асфальт, шина проминает и на это тоже приходится затрачивать часть тяговой силы.

Сопротивление качению колеса оценивается коэффициентом сопротивления качению f.

Коэффициент сопротивления качению равен отношению величины силы Pf, необходимой для качения колеса, к величине реакции Z:

Величина коэффициента сопротивления качению f возрастает с уменьшением давления в шине, с увеличением скорости движения (при малых скоростях увеличение коэффициента f незначительно) и с увеличением неровности дороги. Изменение величины f ясно видно из рассмотрения графика зависимости коэффициента f от скорости движения и давления в шине (на асфальте). Ниже даны значения этого коэффициента для различных видов дорог для скорости 30—60 км/час и при давлении в шинах около 2,5 кг/см2.

Коэффициент сопротивления качению
Асфальт 0,015
Булыжник в хорошем состоянии 0,018
Былыжник в плохом состоянии 0,023
Брусчатая мостовая 0,017
Гравийное шоссе в хорошем состоянии 0,022
Гравийное шоссе в плохом состоянии 0,028
Ровная твердая проселочная дорога 0,023
Проселочная дорога среднего качества 0,026
Тяжелая проселочная дорога 0,03
Песок средней рыхлости 0,15
Снег утрамбованный 0,029

Так как сопротивление качению находится в прямой зависимости от величины коэффициента можно установить, что если для движения автомобиля по асфальту требуется определенная сила, то для движения по булыжнику и по гравийному шоссе нужна в 1,5 раза большая сила, для движения по проселку — в 2 раза, по песку — в 10 раз.

Из уравнения следует, что сила сопротивления качению равна:

или, так как реакция Z равна нагрузке на колесо,

Подсчитав силы сопротивления качению для отдельных колес и сложив их, получаем силу сопротивления качению автомобиля. Хотя сопротивление качению передних, задних, левых и правых колес неодинаковое, без большой ошибки допустимо подсчитывать суммарную силу сопротивления качению для движения с определенной скоростью по уравнению:

где Ga — полный вес автомобиля в кг.

Рис. Коэффициент сопротивления качению увеличивается с возрастанием скорости и с понижением давления в шинах.

На преодоление сопротивления качению затрачивается энергия и нужно уметь вычислить расходуемую при этом мощность.

Прежде чем перейти к мощности, вспомним, что отрезок пути S, пройденный автомобилем в единицу времени t, называется скоростью движения:

Путь измеряют метрами или километрами, а время — секундами или часами; поэтому единицами измерения скорости будут либо метры в секунду (Vа м/сек), либо километры в час (Vа км/час), причем 1 м/сек = 3,6 км/час.

Мощность вычисляют как отношение работы (PS кгм) ко времени (t сек.); так как отношение пути ко времени выражает скорость, то мощность можно вычислить и как произведение силы на скорость:

Значит, чтобы узнать мощность Nf в л.с., расходуемую на сопротивление качению, нужно помножить силу сопротивления Pf на скорость движения va в м/сек и разделить на 75, так как 1 л. с. соответствует механической работе в 75 кгм в 1 сек. Если скорость V выражена в км/час, нужно умножить полученное уравнение мощности на 1000 (метров в километре) и разделить на 3600 (секунд в часе):

Для того чтобы автомобиль двигался, тяговая сила Рк на ведущих колесах должна быть меньше силы сцепления колес с грунтом (иначе колеса будут скользить, буксовать) и не меньше силы сопротивления движению, которую при езде по горизонтальной дороге с невысокой постоянной скоростью (когда сопротивление воздуха незначительно) можно считать равной силе сопротивления качению, иначе колеса не смогут вращаться и двигатель перестанет работать.

В зависимости от числа оборотов вала двигателя и от открытия дроссельной заслонки крутящий момент двигателя изменяется. Почти всегда можно сочетать различные значения момента двигателя и передаточных чисел в коробке передач таким образом, чтобы, как сказано выше, тяговая сила была меньше силы сцепления и не меньше силы сопротивления движению.

Для небыстрого движения по асфальту всем автомобилям требуется значительно меньшая сила тяги, чем они могут развить даже на высшей передаче, поэтому ехать нужно с прикрытой дроссельной заслонкой. Как говорят, автомобили в этом случае обладают большим запасом тяги.

Читайте также:  Контроллер для бесщеточного двигателя схема

На проселочной дороге дело несколько меняется. Легковые автомобили, если нет ухабов, могут ехать на высшей передаче, но при сильном нажатии на педаль подачи топлива. У грузовых автомобилей (с полной нагрузкой) разница между максимальной тяговой силой на высшей передаче и силой сопротивления качению на проселке очень невелика. Поэтому незначительное отклонение от скорости, соответствующей наибольшему крутящему моменту двигателя (40—32 км/час), вызывает необходимость включения следующей передачи (вспомним, что при уменьшении числа оборотов или подачи топлива крутящий момент уменьшается, а вместе с ним и тяговая сила).

Для движения легковых автомобилей по песку тяговой силы на прямой передаче вообще недостаточно, а на второй передаче движение возможно лишь с определенной скоростью (32—26 км/час) и при полной подаче топлива; практически нужно ехать на первой передаче. Автомобиль ГАЗ-51 способен идти по песку только на первой передаче, а ЗИЛ-150 — только на первой и второй передачах. Следует оговориться, что есть такие пески, по которым обычный автомобиль и на первой передаче проехать не может.

Сила сцепления на сухом асфальте больше тяговой силы на любой передаче у любого из рассматриваемых автомобилей. Но на мокром или обледенелом асфальте движение на пониженных передачах и трогание с места без буксования возможно на легковых автомобилях только при неполном открытии дроссельной заслонки, т. е. со сравнительно небольшим крутящим моментом двигателя; для грузовых автомобилей это относится к первой и второй передачам.

Почему колеса автомобиля «крутятся» в обратную сторону, когда он едет?

В данной статье мы постараемся найти ответ на вопрос почему колеса автомобиля крутятся в обратную сторону, когда он едет. Очевидным является тот факт, что направление вращения колес с увеличением скорости не меняется. Возникает вопрос, почему колеса автомобиля крутятся в обратную сторону, когда скорость движения увеличивается.

С ранних лет будущих автомобилистов мучает вопрос, с чем связано то, что колесные диски транспортного средства, движущегося в одном направлении, крутятся в обратную сторону. В этом возрасте данное явление придает еще больше волшебства, что усиливает желание оказаться на водительском сидении за рулем и лично управлять автомобилем.

Далеко не все родители могут найти ответ на этот вопрос для объяснения своему малышу. Максимум, что приходит на ум, это то, что на самом деле вращение происходит правильно, по часовой стрелке, это только впечатление такое создается. И хотелось бы объяснить ребенку, почему так происходит, но к сожалению, многим взрослым ответ не известен.

Начало движения

Во время старта и до тех пор, пока автомобиль не разовьет определенный скоростной режим, четко видно, что колеса вращаются в направлении движения. К тому моменту, когда автомобиль разогнался, наблюдающим со стороны начинает казаться, что колесные диски установлены в одном положении, после чего начали вращение в обратном направлении.

Это можно наблюдать как в живую, так и на видеозаписи. Этот факт становится причиной многочисленных дискуссий и обсуждений. При просмотре видеороликов одни утверждают, что причиной «обратного» вращения является разрешения камеры и съемочного оборудования. Это мнение ошибочно, так как мы уже упоминали выше, что данный факт можно увидеть не только на экране, но и в жизни.

Стробоскоп

Тайна «обратного» вращения заключается в эффекте стробоскопа. Искаженное восприятие вращающегося предмета заключается в оптическом обмане. Обуславливается это мерцанием света между спицами колесного диска и особенностями строения человеческих органов зрения.

На доступном для ребенка языке, объяснением является тот факт, что луч света попадает на спицу в одном и том же положении, что создает эффект ее фиксирования на одном месте. При эффекте обратного вращения – спица докручивается, а человеческий мозг расценивает это как вращение в обратном направлении.

Почему при вращении колес с определенной скоростью они вращаются в обратном направлении?

Оптическая иллюзия вращения автомобильных колес.

Иногда во время движения автомобиля создается ощущение, что колеса находятся в неподвижном состоянии или даже вращаются в обратную сторону. Почему так происходит? Давайте разберемся в принципах красивой оптической иллюзии, которую мы часто видим на дороге.

Мы наверняка не раз видели на дороге, по телевизору, в Интернете как колеса автомобиля вращаются вопреки законам физики. То есть колеса вращаются в обратную сторону, несмотря на движение машины в другую сторону. Возможно, эта иллюзия озадачила вас. Самое удивительное, что когда автомобиль трогается с места, сначала вращение колес может казаться нормальным и естественным. То есть вращение колес происходит в правильном направлении. Однако, как только вращение колес достигает определенной скорости, спицы, лучи колесных дисков иногда начинают двигаться в другую сторону или даже перестают вращаться. Что же происходит?

Читайте также:  Тест драйв хендай туссан 2019 рестайлинг

Эта иллюзия демонстрирует, как работает наша функция зрения и как мозг может интерпретировать и обрабатывать информацию, получаемую с органов зрения. Наши глаза способны работать на частоте 200 кадров в секунду при обработке нормального статичного изображения. Но когда дело доходит до фиксации и обнаружения движения, то согласно исследованиям установлено, что зрительная система человека может обнаруживать изменение в движении (например вращение колеса) только со скоростью 13 кадров в секунду.

Хотя, как мы уже сказали, наши глаза и мозг могут обрабатывать информацию с большей частотой кадров. Но информацию о движении объекта мозг может обрабатывать только со скоростью 10-15 кадров в секунду. Хотя установлено что эта скорость обработки информации нашим мозгом с органов зрения может быть увеличена с помощью специальных тренировок.

И так давайте на примере вращения колеса подробнее узнаем, как работает наше зрение и как обрабатывает информацию наш мозг. Предположим, что автомобильное колесо имеет четыре спицы или четыре луча колесного диска, расположенные под углом 90 градусов друг к другу. Представим, что один луч повернут на 12 часов (если представить колесный диск в виде циферблата часов). Теперь представим вращение колеса по часовой стрелке.

Если колесо на небольшой скорости будет двигаться вперед, то луч, расположенный на положении 12 часов переместиться на положение 2 часа. В этом положении наш мозг будет обрабатывать информацию, полученную от органов зрения как отдельный кадр. В этом случае мы будем видеть не отдельные кадры, а непрерывную картинку движения колеса в обычную сторону при движении автомобиля вперед.

Однако если колесо будет вращаться с большой скоростью, то наш мозг будет не успевать обрабатывать каждый кадр получаемой информации о вращении колесного диска. То есть, интервал вращения спиц или лучей колесного диска, расположенных под углом 90 градусов будут попадать на три, шесть, девять и 12 часов в тот момент, когда наш мозг не будет успевать обрабатывать предыдущие кадры. В итоге при определенной скорости вращения колес нам может показаться, что колесные диски остановились, несмотря на движение машины.

То есть, наш мозг, запомнив первоначальное положение колесных спиц или лучей из-за низкой скорости обработки информации (в среднем 13 кадров в секунду), не успевая обрабатывать каждый кадр, будет думать, что колесо стоит на месте.

При увеличении скорости вращения колес, начинает появляться обратный эффект неэффективности обработки визуальной информации нашим мозгом, который заключается в том, что нашему мозгу будет казаться, что центральная спица или луч колесного диска, расположенный ранее на положении 12 часов, после каждого круга вращения будет смещаться против часовой стрелки на 1 час назад, то есть на 11 часов. В итоге после обработки информации наш мозг будет ошибочно думать, что колесо вращается в обратном направлении.

Вот почему, несмотря на движение вперед, наш мозг будет интерпретировать движение колес на определенной скорости в обратную сторону. Все дело в нехватке скорости обработки зрительной информации.

То же самое происходит и при просмотре видео по телевизору или в Интернете, на котором снято движение автомобиля со скоростью 50 кадров в секунду. В идеале мы видим правильное вращение колес на таком видеоролике при скорости полного оборота вращения колеса меньше 1/50 в секунду. Как только скорость вращения колеса сравняется со скоростью работы камеры или станет выше, то камера снимающая ролик будет не успевать фиксировать полное вращение колесных спиц и лучей и нам будет казаться, либо что вращение колеса прекратилось, либо колесо, несмотря на движение машины вперед, начало вращаться в обратную сторону.

Также аналогичный эффект вы можете увидеть при работающих лопастях вертолета или при движении пропеллеров авиадвигателей.

Adblock
detector