Меню

Частота вращения якоря двигателя при любой схеме возбуждения определяется выражением

Способ определения номинальной частоты вращения ротора электростатического гироскопа

Зачастую приходится понижать скорость вращения двигателя, выполняющего определенные задачи в механизме. Уменьшение числа оборотов элеткродвигателя можно добиться с помощью самодельных приборов, управляющих схем стандартного изготовления.

Электродвигатели переменного тока часто используются в деятельности человека, на металлообрабатывающих станках, транспорта, крановых механизмов и другого оборудования. Двигатели превращают энергию переменного тока питания во вращение вала и агрегатов. Используются в основном асинхронные двигатели переменного тока.

Ротор, а также и статор двигателя состоят из катушек провода, уложенного в сердечник, изготовленный из специальной стали. Классификация электродвигателей следует от способа закладки обмотки.

Обмотка из латунных и медных стержней вставляется в сердечник, по краям устанавливаются кольца. Такая катушка провода называется короткозамкнутым (КР) ротором. Электродвигатели небольшой мощности имеют стержни, а также диски, которые были отлиты вместе. Для электродвигателей с мощным моментом детали отливаются отдельно, затем свариваются. Обмотка статора может быть подключена двумя методами: треугольником, звездой.

Фазный ротор состоит из 3-фазной роторной обмотки, подключенной контактными кольцами и щетками к питанию. Обмотка соединена «звездой».

Расчет количества оборотов асинхронного двигателя

Распространенным двигателем на станках и подъемных устройствах является двигатель с короткозамкнутым ротором, поэтому пример для расчета следует брать для него. Сетевое напряжение поступает на статорную обмотку. Обмотки смещены друг от друга на 120 градусов. Возникшее поле электромагнитной индукции возбуждает электрический ток в обмотке. Ротор начинает работать под действием ЭМС.

Основной характеристикой работы двигателя является число оборотов в минуту. Рассчитываем это значение:

n = 60 f / p, обор / мин;

где f – частота сети, герц, р – количество полюсов статора (в парах).

На корпусе электродвигателя имеется табличка с техническими данными. Если ее нет, то можно самому рассчитать число оборотов вала оборудования по другим имеющимся данным. Расчет производится тремя способами.

  1. Расчет числа катушек, которое сравнивается с нормами для разного напряжения, следует по таблице:

  1. Расчет скорости работы по шагу диаметра обмотки по формуле:

2 p = Z1 / y, где 2р – количество полюсов, Z1 – число пазов в статоре, у – шаг обмотки.

Выбираем из таблицы подходящие обороты двигателя:

  1. Высчитываем количество полюсов по параметрам сердечника по формуле:

2p = 0,35 Z1 b / h или 2 p = 0,5 Di / h,

где 2р – количество полюсов, Z1 – число пазов, b – размер зуба, см, h – высота спинки, см, Di – диаметр по зубцам, см.

По результатам расчета и индукции следует число витков обмотки, сравнивается со значениями мотора по паспорту.

Частота вращения ротора асинхронного двигателя формула

Регулирование частоты вращения асинхронных двигателей

Из этого выражения следует, что частоту вращения ротора асинхронного двигателя можно регулировать изменением какой — либо из трех величин: скольжения s,

частоты тока в обмотке ста­тора
f
1 или числа полюсов в обмотке статора 2р
.
Регулирование частоты вращения изменением скольжения sвозможно тремя способами: изменением подводимого к обмотке статора напряжения, нарушением симметрии этого напряжения и изменением активного сопротивления обмотки ротора.

Регулировка частоты вращения изменением скольжения про­исходит только в нагруженном двигателе. В режиме холостого хода скольжение, а следовательно, и частота вращения остаются практически неизменными.

Регулирование частоты вращения изменением подводи­мого напряжения.Возможность этого способа регулирования подтверждается графиками М = f

(s), построенными для разных значений U1 (см. рис. 13.5). При неизменной нагрузке на валу дви­гателя увеличение подводимого к двигателю напряжения вызыва­ет рост частоты вращения. Однако диапазон регулирования часто­ты вращения получается небольшим, что объясняется узкой зоной устойчивой работы двигателя, ограниченным значением критиче­ского скольжения и недопустимостью значительного превышения номинального значения напряжения. Последнее объясняется тем, что с превышением номинального напряжения возникает опас­ность чрезмерного перегрева двигателя, вызванного резким увели­чением электрических и магнитных потерь. В то же время с уменьшением напряжения U1двигатель утрачивает перегрузочную способность, которая, как известно, пропорциональна квадрату напряжения сети (см. § 13.2).

Подводимое к двигателю напряжение изменяют либо регули­ровочным автотрансформатором, либо реакторами, включаемыми в разрыв линейных проводов.

Узкий диапазон регулирования и неэкономичность (необхо­димость в дополнительных устройствах) ограничивают область применения этого способа регулирования частоты вращения.

Регулирование частоты вращения нарушением симметрии подводимого напряжения.При нарушении симметрии подводи­мой к двигателю трехфазной системы напряжения вращающееся поле статора становится эллиптическим (см. § 9.4). При этом поле приобретает обратную составляющую (встречное поле), которая создает момент Мобр, направленный встречно вращающему момен­ту Мпр. В итоге результирующий электромагнитный момент двига­теля уменьшается (М = Мпр — Мобр).

Механические характеристики двигателя при этом способе регу­лирования располагаются в зоне между характеристикой при симмет­ричном напряжении (рис. 15.10, а, кривая 1) и характеристикой при однофазном питании дви­гателя (кривая 2) — пределом несимметрии трехфазного напряжения.

Для регулировки не­симметрии подводимого напряжения можно в цепь одной из фаз включить однофазный регулировоч­ный автотрансформатор (AT) (рис. 15.10, б). При уменьшении напряжения па выходе AT несиммет­рия увеличивается и частота вращения ротора уменьшается. Недостатками этого способа регулирования являются узкая зона

Рис. 15.10. Механические характеристики (а) и схема включения (б) асинхронного двигателя при регулировании частоты вращения изменением симметрии трехфаз­ной системы

регулирова­ния и уменьшение КПД двигателя по мере увеличения несимметрии напряжения. Обычно этот способ регулирования частоты вращения применяют лишь в двигателях малой мощности.

Регулирование частоты вращения изменением активного сопротивления в цепи ротора.Этот способ регулирования частоты вращения возможен лишь в двигателях с фазным ротором. Ме­ханические характеристики асинхронного двигателя, построенные для различных значений активного сопротивления цепи ротора (см. рис. 13.6), показывают, что с увеличением активного сопро­тивления ротора возрастает скольжение, соответствующее задан­ному нагрузочному моменту. Частота вращения двигателя при этом уменьшается. Зависимость скольжения (частоты вращения) от активного сопротивления цепи ротора выражается формулой, полученной преобразованием (13.13):

Практически изменение активного сопротивления цепи ротора достигается включением в цепь ротора регулировочного реостата (РР), подобного пусковому реостату (ПР) (см. рис. 15.2), но рассчитанного на длительный режим работы. Электрические потери в роторе пропорциональны скольжению (Рэ2 = sPэм), поэтому умень­шение частоты вращения (увеличение скольжения) сопровождается ростом электрических потерь в цепи ротора и снижением КПД двигателя. Так, если при неизменном нагрузочном моменте на валу двигателя увеличить скольжение от 0,02 до 0,5, что соответствует уменьшению частоты вращения примерно вдвое, то потери в цепи ротора составят почти половину электромагнитной мощно­сти двигателя. Это свидетельствует о неэкономичности рассмат­риваемого способа регулирования. К тому же необходимо иметь в виду, что рост потерь в роторе сопровождается ухудшением усло­вий вентиляции из-за снижения частоты вращения, что приводит к перегреву двигателя (см. § 31.1).

Рассматриваемый способ регулирования имеет еще и тот недостаток, что участок меха­нической характеристики, со­ответствующий устойчивой ра­боте двигателя, при введении в цепь ротора добавочного со­противления становится более пологим и колебания нагрузоч­ного момента на валу двигате­ля сопровождаются значитель­ными изменениями частоты вращения ротора. Это иллюст­рирует рис. 15.11, на котором видно, что если нагрузочный момент двигателя изменится на ΔМст = М / ст – М // ст, то измене­ние частоты

Рис. 15.11. Влияние сопротивления цепи ротора на

колебания частоты вращения при изменении нагрузки

вращения при выведенном регулировочном реостате ( rд‘ = 0 ) составит Δn2I, а при введенном реостате — Δn2II. В послед­нем случае изменение частоты вращения значительно больше.

Как изменить скорость работы двигателя?

Изменять скорость вращающего момента механизма оборудования можно различными способами, например, механическими редукторами с переключением передач, муфтами и другими устройствами. Но это не всегда возможно. Практически используется 7 способов коррекции частоты вращения регулируемых приводов. Все способы разделены на два основных направления.

  1. Коррекция магнитного поля путем воздействия на частоту тока, уменьшение или увеличение числа пар полюсов, коррекция напряжения. Направление характерно моторам с короткозамкнутым (КР) ротором.
  2. Скольжение корректируется напряжением питания, добавлением еще одного резистора в цепь схемы ротора, установкой двойного питания, использованием каскада вентилей. Такое направление используется для роторов с фазами.

Регулировка частоты и напряжения с помощью частотного преобразователя, путем создания дополнительной катушки с переключением полюсов пар, являются самыми востребованными способами.

Регулирование частоты вращения асинхронного двигателя

Общие сведения. Технологический процесс часто требует изменения частоты вращения исполнительного механизма. С этой целью широко применяются коробки скоростей, которые усложняют кинематику провода, вызывают вибрацию системы и увеличивают инерционность привода. Для повышения точности обработки и увеличения производительности целесообразно использовать регулировочные свойства двигателей. В асинхронных двигателях частота вращения определяется из равенства

где n1 = 60f 1 / р.

Из этого равенства следует, что изменять п можно тремя способами: изменением частоты f1 , числа пар полюсов р и скольжения s. Частоту вращения ротора в принципе можно регулировать изменением напряжения питания U1. Однако с увеличением U1 появляется опасность превышения допустимой температуры нагрева двигателя, а с уменьшением U1 уменьшается перегрузочная способность двигателя.

Регулирование изменением частоты (частотное регулирование). Этим способом изменение частоты вращения ротора п осуществляется за счет изменения частоты питающего напряжения f1. Это возможно потому, что скольжение в номинальном режиме составляет всего 2—8 %.

Читайте также:  Хонда нс 750 автомат тест драйв

Для изменения частоты f1 могут применяться машинные и полупроводниковые (тиристорные) преобразователи. На рис. 3.36 показана схема машинного преобразователя. Асинхронный двигатеь АД с постоянной частотой вращает генератор постоянного тока Г, работающий в системе генератор — двигатель. Генератор Г питает двигатель Д постоянного тока, частота вращения которого регулируется током возбуждения генератора Г и двигателя Д.

Двигатель вращает с различными частотами синхронный генератор СГ, частота выходного напряжения которого f1 = n1p/60 изменяется. В результате АД изменяет частоту вращения рабочего механизма. Этот способ позволяет плавно изменять частоту вращения АД. Недостатками способа являются высокая стоимость преобразователя, низкий КПД установки из-за многократного преобразования энергии, сравнительно небольшой диапазон регулирования.

Частотное тиристорное регулирование. Значительно больший эффект при частотном регулировании достигается применением тиристорных преобразователей. На рис. 3.37 показана схема такого регулирования. Тиристорный преобразователь ТП питается от трехфазной сети с постоянными значениями напряжения U1 и частоты f1.

На выходе преобразователя получается постоянное варьируемое напряжение U1c. Это напряжение подается на блок инвертора И, на выходе которого появляется регулируемое переменное напряжение U1v при частоте f1v. Напряжение U1v подается на асинхронный двигатель АД.

Для автоматизации процесса регулирования необходимо дополнительно иметь блок задания частоты БЗЧ и блоки управления напряжением УН и частотой УЧ.

Для поддержания точного значения скорости целесообразно иметь обратную связь по частоте с выхода АД на блок задания частоты.


Регулирование изменением числа полюсов.

Асинхронный двигатель не имеет явно выраженных полюсов и поэтому его число полюсов зависит от схемы соединения катушек в обмотках каждой фазы статора.

Если, например, обмотка фазы состоит из двух катушек, то при их последовательном соединении число пар полюсов р = 2, а при параллельном соединении р = 1. Начала и концы катушек выводятся на клеммы щитка, так что переключение катушек можно делать на работающем двигателе. Можно разместить в пазах статора две независимые обмотки, каждая из которых создает разное число пар полюсов, например, р = 1 и р = 2.

Одна из обмоток может, например, соединяться в одинарную звезду, а другая – в двойную звезду (рис. 3.38, а и б). Можно также переключать треугольник в двойную звезду (рис. 3.39, а и б).

В результате двигатель будет трехскоростной. В принципе можно разместить на статоре две обмотки, каждая из которых имеет две скорости, такая машина будет четырехскоростной. Однако размещение нескольких обмоток увеличивает габариты и стоимость машины. Поэтому лучше применять одну обмотку с переключением на четыре скорости. При этом можно получить синхронные скорости 3000 / 1500 / 1000 / 500 или 1500 / 1000 / 750 / 500 об/мин или другие комбинации.

Регулирование изменением числа полюсов является ступенчатым регулированием. Механические характеристики при разном числе пар полюсов показаны на рис. 3.40. Этот способ регулирования экономичен, рабочая часть характеристик жесткая, но данный способ применяется лишь в случаях, не требующих плавного регулирования, например в станках, где ступенчатое регулирование применяется с целью уменьшения числа ступеней в коробках скоростей, вентиляторах, насосах и др.

Регулирование частоты вращения изменением подводимого напряжения. При уменьшении напряжения U момент двигателя уменьшается пропорционально U2. В связи с этим изменяются механические характеристики, уменьшается критический момент Mк , при постоянном моменте сопротивления увеличивается скольжение и уменьшается частота вращения ротора.

Уменьшать напряжение U можно включением в цепь статора реостатов (рис. 3.41, а), автотрансформаторов (рис. 3.41,6) или регулируемых дросселей (рис. 3.41, в). При включении реостатов в них теряется значительная мощность (RI2).

Автотрансформаторы дают возможность регулировать частоту вращения лишь вручную.

Регулируемые дроссели позволяют автоматизировать этот процесс, для чего их цепь


включается в систему автоматического регулирования.

Данный метод применяется только у двигателей малой мощности, так как при этом способе регулирования уменьшается КПД двигателя, уменьшается критический момент, а диапазон регулирования сравнительно небольшой.

Регулирование изменением сопротивления цепи ротора R2 (реостатное регулирование). Этот способ применим только для двигателей с фазным ротором. Такое регулирование связано с изменением скольжения s в соответствии с зависимостью п = п1 (1 — s).

Из формул ( 3.26) и ( 3.28) следует, что с увеличением R2 угол наклона механической характеристики увеличивается, а критический момент остается постоянным (Mк = const).

На рис. 3.42 представлено семейство характеристик п(М) при различных R2 . Если момент нагрузки Mc = const, то частота вращения n с увеличением R2 падает, а скольжение увеличивается.

Этот способ регулирования имеет ряд недостатков: дополнительные потери энергии в реостате, механические характеристики становятся мягкими, относительно малый диапазон регулирования.

Распространенные схемы регуляторов

Существует множество частотных преобразователей для асинхронных двигателей, а также различных регуляторов для них. Самостоятельно возможно изготовить прибор для регулировки частоты, применяя транзисторы или тиристоры. Прибор работает как в быту, так и для станочного оборудования, крановых механизмов, различных регулируемых приводов агрегатов.

Мощный регулятор частоты и напряжения показан на схеме. Прибор плавно изменяет параметры привода, экономит энергию, снижает расходы на обслуживание.

Для применения этой схемы в быту, она сложная. Если использовать симистор рабочим элементом, то схема упрощается, и выглядит иначе.

Регулировка будет происходить работой потенциометра, определяюцим фазу импульса входа, и открывающего симистор.

Эффект эксплуатации станков, обрабатывающих металл, подъемных устройств также следует из вращения двигателя, как и сами его эксплуатационные параметры. В продаже имеется множество приборов для регулировки частоты, однако можно вполне собрать такой прибор собственными силами.

Как выбрать частотный преобразователь?

Если проанализировать цены и функции преобразователей частоты, то можно понять, что по цене определяется количество встроенных функции частотного преобразователя. Дорогие модели обладают большой функциональностью. Но для выбора прибора лучше руководствоваться требуемыми условиями применения.

  • Частотники бывают с двумя видами управления: скалярное, векторное. При скалярном управлении прибор действует при определенных значениях выходной разности потенциалов и частотой, работают в примитивных домашних приборах, например, вентиляторах. При векторном управлении сила тока устанавливается достаточно точно.
  • При выборе прибора параметры мощности играют определяющую роль. Величина мощности расширяет сферу использования, упрощает обслуживание.
  • При выборе устройства учитывается интервал рабочего напряжения сети, что снижает опасность выхода его из строя из-за резких перепадов разности потенциалов. При чрезмерном повышении напряжения конденсаторы сети могут взорваться.
  • Частота – немаловажный фактор. Его величина определяется требованиями производства. Наименьшее значение говорит о возможности использования скорости в оптимальном режиме работы. Для получения большего интервала частоты применяют частотники с векторным управлением. В реальности часто используются инверторы с интервалом частот от 10 до 10 Гц.
  • Частотный преобразователь, имеющий много разных выходов и входов удобен в пользовании, но стоимость его выше, настройка сложнее. Разъемы частотников бывают трех типов: аналоговые, дискретные, цифровые. Связь обратного вида вводных команд производится через аналоговые разъемы. Цифровые клеммы производят ввод сигналов от датчиков цифрового типа.
  • Выбирая модель частотного преобразователя, нужно дать оценку управляющей шине. Ее характеристика подбирается под схему инвертора, что обуславливает число колодок. Наилучшим выбором работает частотник с запасом количества разъемов для дальнейшей модернизации прибора.
  • Частотники, выдерживающие большие перегрузки (на 15% выше мощности мотора), при выборе имеют предпочтения. Чтобы не ошибиться при покупке преобразователя частоты, ознакомьтесь с инструкцией. В ней имеются главные параметры эксплуатации оборудования. Если нужен прибор для максимальных нагрузок, то необходимо выбирать частотник, сохраняющий ток на пике работы выше, чем на 10% от номинала.

Регулирование скорости вращения двигателей постоянного тока

>С увеличением нагрузки на валу двигателя увеличивается так же и ток в якоре. Это вызывает увеличение падения напряжения» сопротивлении обмотки якоря и щеточных контактах.

Так как ток возбуждения остается неизменным (машина нерегулируема), то магнитный поток также постоянен. Однако при увеличении тока в якоре увеличивается размагничивающее действие потока реакции якоря и магнитный поток Ф несколько уменьшится. Увеличение Iяrя вызывает уменьшение скорости двигателя, а уменьшение Ф увеличивает скорость. Обычно падение напряжения влияет на изменение скорости в несколько большей степени, чем реакция якоря, так что с увеличением тока в якоре скорость умень­шается. Изменение скорости у двигателя этого типа незначительно и не превышает 5% при изменении нагрузки от нуля до номиналь­ной, т. е. двигатели параллельного возбуждения имеют жесткую скоростную характеристику.

При неизменном магнитном потоке зависимость момента от тока в якоре представится прямой линией. Но под воздействием

Вращающий момент двигателя реакции якоря с увеличением нагрузки происходит некоторое уменьшение магнитного потока и зависимость момента пойдет не­сколько ниже прямой линии.

Схема двигателя последовательного возбуждения показана на рис. 153. Пусковой реостат этого двигателя имеет только два за­жима, так как обмотка возбуждения и якорь образуют одну последовательную цепь. Характеристики двигателя изображены на рис. 154. Число оборотов двигателя последовательного возбуждения определяется следующим выражением:

где rс— сопротивление последовательной обмотки возбуждения. В двигателе последовательного возбуждения магнитный поток не остается постоянным, а резко изменяется с изменением нагруз­ки, что вызывает значительное изменение скорости. Так как паде­же напряжения в сопротивлении якоря и в обмотке возбуждения очень мало в сравнении с приложенным напряжением, то число оборотов можно приближенно определить следующим выражением:

Читайте также:  Детские коляски тест драйв

Если пренебречь насыщением стали, то можно считать магнитный поток пропорциональным току в обмотке возбуждения, который равен току в якоре. Следовательно, у двигателя последовательного возбуждения скорость вращения обратно пропорциональна току в якоре и число оборотов резко уменьшается с увеличением нагруз­ки, т. е. двигатель имеет мягкую скоростную характеристику. С уменьшением нагрузки скорость вращения двигателя увеличи­вается. При холостом ходе (Iя=0) скорость двигателя беспредель­но возрастает, т. е. двигатель идет в разнос.

Таким образом, характерным свойством двигателей последова­тельного возбуждения является недопустимость сброса нагрузки, т. е. работы вхолостую или при малых нагрузках. Двигатель имеет минимальную допустимую нагрузку, составляющую 25—30% номи­нальной. При нагрузке меньше минимально допустимой скорость двигателя резко увеличивается, что может вызвать его разрушение. Поэтому, когда возможны сбросы или резкие уменьшения нагруз­ки, использование двигателей последовательного возбуждения яв­ляется недопустимым.

В двигателях очень малых мощностей сброс нагрузки не вызы­вает разноса, так как механические потери двигателя будут доста­точно большой нагрузкой для него.

Вращающий момент двигателя последовательного возбуждения, учитывая пропорциональную зависимость между магнитным пото­ком и током в якоре (Ф = С’Iя), можно определить следующим выражением:

т. е. вращающий момент пропорционален квадрату тока. Однако при больших токах сказывается насыщение стали и зависимость момента приближается к прямой линии. Таким обра­зом двигатели этого типа развивают большие вращающие момен­ты при малых оборотах, что имеет существенное значение при пуске больших инерционных масс и перегрузках. Эти двигатели широко используют в транспортных и подъемных устройствах.

При смешанном возбуждении возможно как согласное, так и встречное включение обмоток возбуждения.

Двигатели со встречным включением обмоток не нашли широ­кого применения, так как они обладают плохими пусковыми свой­ствами и работают неустойчиво.

Скоростные характеристики двигателей смешанного возбужде­ния занимают промежуточное положение между характеристика­ми двигателей параллельного и последовательного возбуждения.

С увеличением тока в якоре число оборотов якоря уменьшается в большей мере, чем для двигателей параллельного возбуждения, за счет увеличения магнитного потока, вызываемого увеличением тока в последовательной обмотке возбуждения. При холостом ходе двигатель смешанного возбуждения не идет вразнос, так как маг­нитный поток не уменьшается до нуля из-за наличия параллельной обмотки возбуждения.

При увеличении нагрузки в двигателях смешанного возбуждения увеличивается магнитный поток и вращающий момент возрастает в большей мере, чем в двигателях параллельного возбуждения, но в меньшей мере, чем в двигателях последовательного воз­буждения.

§ 116 РЕГУЛИРОВАНИЕ СКОРОСТИ ВРАЩЕНИЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА

Двигатели постоянного тока дают возможность плавно и эконо­мично регулировать скорость вращения в широких пределах. В результате этого весьма ценного свойства двигатели постоянного тока получили широкое распространение и часто являются неза­менимыми.

Число оборотов якоря двигателя при любой схеме возбуждения определяется следующим выражением:

где rс — сопротивление последовательной обмотки возбуждения (для двигателя параллельного возбуждения rс=0). Это выраже­ние показывает, что изменение скорости вращения двигателя мож­но осуществить изменением напряжения сети, сопротивления цепи якоря и магнитного потока.

Регулирование скорости вращения изменением напряжения сети осуществляется в случае, когда источником электрической энергий двигателя является какой-либо генератор.

Для регулирования скорости вращения двигателя изменением сопротивления цепи якоря используется регулировочный реостат, включенный последовательно с якорем. В отличие от пускового ре­гулировочный реостат должен быть рассчитан на длительное про­хождение тока. В сопротивлении регулировочного реостата происходит большая потеря энергии, вследствие чего резко уменьшается

Регулирование скорости вращения якоря двигателя изменением магнитного потока производится изменением тока в обмотке воз­буждения. В двигателях параллельного и смешанного возбуждения включается регулировочный реостат. В двигателях последователь­ного возбуждения изменение тока в обмотке возбуждения дости­гается шунтированием этой обмотки каким-либо регулируемым со­противлением. Этот способ регулирования скорости не создает до­полнительных потерь и экономичен.

§ 117. ПОТЕРИ И К. П. Д. МАШИН ПОСТОЯННОГО ТОКА

В машинах постоянного тока при работе происходит потеря энергии, которая складывается из следующих потерь:

1. Потери в стали Рст на гистерезис и вихревые токи, возникающие в сердечнике якоря. При вращении якоря машины сталь его сердечника непрерывно перемагничивается. На перемагничивание стали затрачивается мощность, называемая потерями на гистерезис. Одновременно, при вращении якоря в магнитном поле в сердеч­нике его индуктируются вихревые токи. Потери на гистерезис и вихревые токи, называемые потерями в стали, обращаются в тепло и нагревают сердечник якоря.

Потери в стали зависят от магнитной индукции и частоты перемагничивания сердечника якоря.

Магнитная индукция зависит от э. д. с. машины или, иначе, от напряжения, а частота перемагничивания — от скорости вращения якоря. Поэтому при работе машины постоянного тока в режиме ге­нератора или двигателя потери в стали будут постоянными, не за­висящими от нагрузки, если напряжение на зажимах якоря и ско­рость его вращения постоянны.

2. Потери энергии на нагревание проводов обмоток возбужде­ния и якоря протекающими по ним токами, называемые потерями в меди,— Роб.

Как подключить частотный преобразователь

Если кабель для подключения на 220 В с 1-й фазой, применяется схема «треугольника». Нельзя подключать частотник, если выходной ток выше 50% от номинального значения.

Если кабель питания на три фазы 380 В, то делается схема «звезды». Чтобы проще было подключать питание, предусмотрены контакты и клеммы с буквенными обозначениями.

  • Контакты R, S, T предназначены для подключения сети питания по фазам.
  • Клеммы U , V , W служат соединением электродвигателя. Для реверса достаточно изменить подключение двух проводов между собой.

В приборе должна быть колодка с клеммой подключения к земле. Подробней, как подключить, здесь.

а) Увеличится б) Уменьшится

в) Останется прежней г) Число пар полюсов не влияет на

Определить скольжение трехфазного асинхронного двигателя, если известно, что частота вращения ротора 850 об/мн. Частота магнитного поля 1000 об/мин.

Укажите основной недостаток асинхронного двигателя.

а) Сложность конструкции

б) Зависимость частоты вращения от момента на валу

г) Отсутствие экономичных устройств для плавного регулирования частоты вращения ротора.

Раздел 6 «Синхронные машины»

Какое количество полюсов должно быть у синхронного генератора, имеющего частоту тока 50 Гц, если ротор вращается с частотой 125 об/мин?

в) 48 пар г) 6 пар

С какой скоростью вращается ротор синхронного генератора?

а) С той же скоростью, что и круговое магнитное поле токов статора

б) Со скоростью, большей скорости вращения поля токов статора

в) Со скоростью, меньшей скорости вращения поля токов статора г) Скорость вращения ротора определяется заводом — изготовителем

С какой частотой вращается магнитное поле обмоток статора синхронного генератора, если в его обмотках индуцируется ЭДС частотой 50 Гц, а индуктор имеет четыре пары полюсов?

в) 1500 об/мин г) 200 об/мин

В качестве, каких устройств используются синхронные машины?

а) Генераторы б) Двигатели

в) Синхронные компенсаторы г) Всех перечисленных

5. Синхронный генератор с числом пар полюсов p=1 и частотой вращения магнитного поля 3000 об/мин. Определить частоту тока.

6.Включения синхронного генератора в энергосистему производится:

а) В режиме холостого хода б) В режиме нагрузки

в) В рабочем режиме г) В режиме короткого

Раздел 7 «Электроника»

Какие диоды применяют для выпрямления переменного тока?

а) Плоскостные б) Точечные

Из каких элементов можно составить сглаживающие фильтры?

а) Из резисторов б) Из конденсаторов

в) Из катушек индуктивности г) Из всех вышеперечисленных приборов

3.Для выпрямления переменного напряжения применяют:

а) Однофазные однополупериодные б) Балансные выпрямители выпрямители

в) Мостовые выпрямители

г) Все перечисленные

Укажите полярность напряжения на эмиттере и коллекторе транзистора типа p-n-p.

в) плюс, минус г) минус, минус

Каким образом элементы интегральной микросхемы соединяют между собой?

а) Напылением золотых или алюминиевых дорожек через окна в маске б) Пайкой лазерным лучом

г) Всеми перечисленными способами

Как называют средний слой у биполярных транзисторов?

Сколько p-n переходов содержит полупроводниковый диод?

Как называют центральную область в полевом транзисторе?

в) Исток г) Коллектор

Сколько p-n переходов у полупроводникового транзистора?

10.Управляемые выпрямители выполняются на базе:

а) Диодов б) Полевых транзисторов

в) Биполярных транзисторов г) Тиристоров

11.Электронные устройства, преобразующие постоянное напряжение в переменное, называются:

а) Выпрямителями б) Инверторами

в) Стабилитронами г) Фильтрами

Часть 2

Вращающаяся часть машины переменного тока –­­­­­­­­­­­­­­
ротор
2. ______________________________ характеризует энергию, запасенную в каждой точке электрического поля.

3. ________________________– упорядоченное движение заряженных частиц (электронов и ионов)

4. Величина, обратная сопротивлению –____________________________

5. Число полных оборотов изменения э. д. с, напряжения или тока в 1 с. –_____________________________________________________________

6. Электрическая машина, преобразующая электрическую энергию в механическую называется ________________________________________

7. Переменный ток не протекает равномерно по всему поперечному сечению проводника, как постоянный ток, а вытесняется на его поверхность. Поэтому его сопротивление при переменном токе возрастает. Это явление носит название _____________________________

8. Разность потенциалов между двумя точками поля – ­­­­­­­­­­­­­­­­­­­­­­­­­­­­__________________

9. Сопротивление катушки переменному току, вызванное действием э. д. с. самоиндукции, называется __________________________________

Читайте также:  Как сделать косметический ремонт кузова автомобиля

10. Способность тела превращать электрическую энергию в тепловую при прохождении по нему эл. тока –________________________________

11. Устройство, состоящее из двух металлических пластин, разделенных слоем диэлектрика — __________________________________________

12. Каждую из обмоток трехфазного генератора вместе с присоединенной к ней внешней цепью принято называть___________________________

13. Количество заряда, проходящее через поперечное сечение проводника за единицу времени –______________________________________

14. Напряжение между линейными проводами в трехфазной системе называется __________________________________________________

15. Неподвижная часть машины переменного тока ­­– ____________________

16. Промежуток времени, в течение которого э. д. с, напряжение или ток совершают полный цикл изменений –_________________________

17. Статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты – _________________________________________

18. Сопротивление, которое оказывает конденсатор переменному току, называют ___________________________________________________

19. При разомкнутой вторичной обмотке трансформатор работает в режиме ______________________________________________

20. Электрическая машина, преобразующая механическую энергию в электрическую называется _______________________________________

21. Катушка, обтекаемая током, называется ____________________________

22. _____________________________ состоит из статора, якоря, коллектора, токосъемных щеток.

23. Напряжение между началом и концом одной фазы в трехфазной системе называется __________________________________________________

24. В асинхронных двигателях клеммы для подключения источника тока выводятся на ___________________________

25. В генераторе постоянного тока клеммы для подключения потребителя выводятся на ______________

26. Явление возникновения электрического тока в проводнике при изменении магнитного потока, пронизывающего этот проводник называется____________________________________________________

27. Активное сопротивление в цепи переменного тока зависит от ________________________________________________________________

28. Для защиты электрических устройств от резкого увеличения тока, вызванного коротким замыканием, используют______________________

29. В при соединении потребителей по схеме «звезда» с нулевым проводом фазы являются__________________________________________________

30. В при соединении потребителей по схеме «звезда» без нулевого провода фазы будут__________________________________________________

Часть 3

1. Катушка с активным сопротивлением 20 Ом и индуктивностью 0,05 Гн соединена последовательно с конденсатором, емкостью 25*10-6 Ф и подключена к источнику переменного тока с частотой 300 Гц и действующим значением напряжения 160 В. Определить действующее значение тока, полное сопротивление цепи, полную, активную и реактивную мощности. Построить векторную диаграмму тока и напряжения

2. Катушка с активным сопротивлением 40 Ом и индуктивностью 0,02 Гн соединена параллельно с конденсатором, активным сопротивлением 120 Ом и емкостью 1,8*10-6 Ф и подключена к источнику переменного тока с частотой 500 Гц и действующим значением напряжения 300 В. Определить действующее значение токов в каждой ветке и общее значение тока в цепи, полное сопротивление цепи, полную, активную и реактивную мощности. Построить векторную диаграмму тока и напряжения.

3. К трехфазному источнику с симметричной системой фазных напряжений подключены сопротивления, распределение которых по фазам следующее: в фазе А – емкостное сопротивление 10 Ом; в фазе В – емкостное сопротивление 8 Ом; в фазе С – катушка с активным сопротивлением 5 Ом и индуктивным 3 Ом. Значения линейного напряжения 220 В. При расчете цепи пренебрегаем сопротивлением линейных и нейтрального проводов. Требуется: 1) нарисовать схему соединения приемников в звезду с нулевым проводом; 2) определить токи в линейных и нейтральном проводах; 3) определить активную, реактивную и полную мощности, потребляемые цепью; 4) построить векторную диаграмму.

Как обслуживать частотные преобразователи?

Для долгосрочной эксплуатации инвертора требуется контроль за его состоянием и выполнение предписаний по обслуживанию:

  1. Очищать от пыли внутренние элементы. Можно использовать компрессор для удаления пыли сжатым воздухом. Пылесос для этих целей не подходит.
  2. Периодически контролировать состояние узлов, производить замену. Срок службы электролитических конденсаторов составляет пять лет, предохранительных вставок – десять лет. Охлаждающие вентиляторы работают до замены 3 года. Шлейфы проводов используются шесть лет.
  3. Контроль напряжения шины постоянного тока и температура механизмов является необходимым мероприятием. При повышенной температуре термопроводящая паста засыхает и выводит из строя конденсаторы. Каждые 3 года на силовые клеммы наносят слой токопроводящей пасты.
  4. Условия и режим работы необходимо соблюдать в строгом соответствии. Температура окружающей среды не должна превышать 40 градусов. Пыль и влажность отрицательно влияют на состояние рабочих элементов прибора.

Окупаемость преобразователя частоты

Электроэнергия постоянно дорожает, руководители организаций вынуждены экономить разными путями. В условиях промышленного производства большая часть энергии расходуется механизмами, имеющими электродвигатели.

Изготовители устройств для электротехнических машин и агрегатов предлагают специальные устройства и приборы для управления электромоторами. Такие устройства экономят энергию электрического тока. Они называются инверторами или частотными преобразователями.

Финансовые затраты на покупку частотника не всегда оправдывают экономию средств, так как стоимость их сопоставима со стоимостью сэкономленной энергии. Не всегда привод механизма можно быстро оснастить инвертором. Какие сложности при этом возникают? Разберем способы запуска асинхронных двигателей для пониманию достоинств инверторов.

Регулирование частоты вращения электродвигателей

Порядка 70 % потребляемой промышленностью мощности, приходится на электропривод. Огромное разнообразие технологических процессов диктует свои правила, вследствие чего, появилась необходимость в изменении скорости вращения электродвигателя непосредственно во время технологического процесса. В данной статье мы раскроем различные способы регулирования скорости вращения электродвигателей.

Параметры, изменив которые, мы изменим скорость двигателя переменного тока (ДПТ):

  • частота напряжения;
  • число пар полюсов;
  • величина напряжения;
  • добавочное сопротивление в цепи ротора;
  • вентильный каскад.

Изменяемые параметры для ДПТ:

  • напряжение питания;
  • сопротивление цепи обмотки якоря;
  • магнитный поток.

Методы регулирования частоты вращения электродвигателя

Далее мы подробно рассмотрим эти способы и их применимость к различным типам электродвигателей.

Частотное регулирование

Наиболее эффективный, постоянно совершенствующийся способ. Применение: двигатели переменного тока (синхронные и асинхронные с кз ротором). Корректируя частоту питающего напряжения, мы изменим угловую скорость магнитного поля статора, следовательно, скорость двигателя в значительном диапазоне, имея достаточно жесткие механические характеристики. Для сохранения в норме коэффициента мощности и допустимости кратковременных перегрузок, меняя частоту, следует изменять и саму величину питающего напряжения.

Преимущества способа:

  • обширный диапазон регулировки;
  • «жесткость» механических характеристик;
  • минимум потерь «скольжения», мощности.

Недостаток — высокая стоимость (в последние годы становится менее актуально).

Регулирование изменением числа пар полюсов

Применение: т.к. промышленность не выпускает серийно синхронные двигатели с изменяемым количеством пар полюсов, будем считать, что способ актуален только для асинхронных двигателей (далее АД) с кз ротором. Способ реализуется изменением числа пар полюсов у обмоток. Этого можно добиться, изготовив двигатель с двумя независимыми обмотками. Но этот метод приводит к удорожанию конструкции и увеличению размеров машины. Поэтому наиболее выгодным является увеличение числа пар полюсов без использования второй независимой обмотки. Промышленностью выпускаются двухскоротсные, трёхскоростные и четырёхскоростные электродвигатели.

Достоинства:

  • экономичность;
  • «жёсткие» механические характеристики.

Недостатки:

  • ограниченное количество возможных скоростей;
  • ступенчатость переключения скоростей.

Изменение питающего напряжения

Применение: асинхронные двигатели.

Изменять напряжение на статоре можно, включая в его цепь резисторы (старый и неэкономичный способ), автотрансформаторы или тиристорные регуляторы. При регулировании скорости изменением напряжения, критический момент пропорционален квадрату подводимого напряжения. Снижается устойчивость к кратковременным перегрузкам и КПД, поэтому метод предпочтителен при «вентиляторной» нагрузке. Еще один недостаток — малый диапазон регулирования.

Добавочное сопротивление в цепи ротора

Применение: АД с фазным ротором. При изменении сопротивления ротора прямо пропорционально изменяется скольжение. Но величина критического момента остается постоянной. Это позволяет подобрать сопротивления так, чтобы уравнять критический момент с пусковым, что благоприятно сказывается на пуске двигателя под нагрузкой.

Достоинства способа:

  • простота реализации;
  • критический момент = const;

Недостатки:

  • большие потери (при изменении скорости половина мощности тратится на выделение тепла);
  • малый диапазон;
  • «мягкие» механические характеристики.


Асинхронный вентильный каскад

Применение: АД с фазным ротором.

Смысл регулирования каскадными схемами заключается в подаче в цепь ротора добавочной ЭДС. Изменяя добавочную ЭДС ротора, мы изменяем ток ротора, а значит его момент и скорость. Создать добавочную ЭДС, помимо устройства вентильного каскада, может и ДПТ — машинно-вентильный каскад.

Достоинства:

  • Минимум сопутствующей силовой и контактной аппаратуры;
  • плавность регулировок;
  • малая мощность управления.

Недостатки:

  • стоимость;
  • низкий коэффициент мощности;
  • плохая устойчивость к перегрузкам.

Изменение напряжения питания якоря

Применение: любые ДПТ. Способ можно использовать если источником электрической энергии является генератор. Реализовать от общей сети невозможно.

Достоинства:

  • плавность регулировок;
  • простота пусков и торможений;
  • экономичность.

Недостатки:

  • необходимость трехкратного преобразования энергии→низкий КПД;
  • три электрические машины в системе;
  • дорогая эксплуатация.

Введение добавочного резистора в цепь якоря

Применение: любые ДПТ.

Заключается в последовательном включении в цепь якоря регулировочного реостата. Но способ не получил распространения ввиду своей неэкономичности и плохого влияния на КПД двигателя, т.к. в цепи реостата теряется очень большое количество энергии.

Регулирование изменением магнитного потока

В цепь возбуждения двигателей параллельного и смешанного возбуждения подключается реостат. В машинах последовательного возбуждения изменение магнитного потока в обмотке возбуждения производится шунтированием этой обмотки регулируемым сопротивлением. Максимальная скорость вращения двигателя ограничивается лишь механической прочностью якоря. Скорость двигателя регулируется в диапазонах 2:1-5:1, в частных случаях 8-10:1.

Преимущества:

  • минимальные потери→экономичность;
  • широкий диапазон регулирования

Недостатки:

  • невозможно бесконечно уменьшать ток в обмотке возбуждения, двигатель уйдет «в разнос».
Adblock
detector